搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成

赵丽娟 姜焕秋 徐志钮

引用本文:
Citation:

螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成

赵丽娟, 姜焕秋, 徐志钮

Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum

Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu
PDF
HTML
导出引用
  • 针对螺旋扭曲的单包层-少芯光子晶体光纤在生成轨道角动量(orbital angular momentum, OAM)方面存在的不足, 首次将三芯和内外空气孔不均匀的双包层结构引入光子晶体光纤, 并通过螺旋扭曲实现了高阶OAM模式的生成. 该光纤通过引入特殊设计的双包层结构有望降低生成的OAM模式的损耗, 而围绕中心呈正三角分布的三个纤芯有望增加生成的OAM模式的数量. 在光学变换原理的基础上, 通过有限元方法对该光纤进行系统的分析, 结果发现, 当扭曲率α = 7853.98 rad/m时, 生成的OAM模式包括“OAM–4,1, OAM+9,1, OAM+10,1, OAM+11,1, OAM+13,1”, 其中+13阶是目前利用螺旋扭曲光纤生成的OAM模式中最高的阶数, 且OAM模式的损耗均小于1.64×10–3 dB/m, 比已有文献中最低的OAM模式损耗(Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131)至少降低2个数量级, 以及OAM模式纯度均大于93%. 进一步研究表明, 轨道角动量的生成依赖于纤芯超模与环形芯模式的共振耦合, 而生成的OAM模式阶数的奇偶性与纤芯超模和环形芯模式的极化方向有关.
    Aiming at the shortcomings of helically twisted single-cladding-few-core photonic crystal fibers in generating orbital angular momentum (OAM), the double-cladding and three-core structures with non-uniform inner and outer air holes are introduced into a photonic crystal fiber for the first time and the generation of high-order OAM modes through helical twisting is realized. The fiber is expected to reduce the losses of the generated OAM modes by introducing a specially designed double-cladding structure, while the three cores distributed in a regular triangle around the center are expected to increase the number of generated OAM modes. On the basis of optical transformation theory, the optical fiber is systematically analyzed by the finite element method. It is found that with the twist rate α = 7853.98 rad/m, the generated OAM modes include “OAM–4,1, OAM+9,1, OAM+10,1, OAM+11,1, OAM+13,1”, where +13 is the highest order in the OAM modes currently generated by using helically twisted fibers. And the losses of OAM modes are all less than 1.64×10–3 dB/m, which is at least two orders of magnitude lower than the lowest OAM mode loss reported in the existing references (Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131), and their purity is greater than 93%. Further studies show that the generation of orbital angular momentum depends on the resonant coupling between the core supermode and the ring-core mode, and the parity of the order of the generated OAM modes is related to the polarization direction of the fiber core supermode and the ring-core mode.
      通信作者: 徐志钮, wzcnjxx@163.com
    • 基金项目: 国家自然科学基金(批准号: 62171185, 62273146)、河北省自然科学基金(批准号: E2020502010)和河北省省级科技计划(批准号: SZX2020034)资助的课题.
      Corresponding author: Xu Zhi-Niu, wzcnjxx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171185, 62273146), the Natural Science Foundation of Hebei Province, China (Grant No. E2020502010), and the S&T Program of Hebei Province, China (Grant No. SZX2020034).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Wang J 2019 Sci. China-Phys. Mech. Astron. 62 034201Google Scholar

    [3]

    Guanghao R, Xiaoyan W, Yiping C 2015 Opt. Express 23 25707Google Scholar

    [4]

    Qiu X D, Li F S, Zhang W H, Zhu Z H, Chen L X 2018 Optica 5 208Google Scholar

    [5]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

    [6]

    Li D L, Chang C L, Nie S P, Feng S T, Ma J, Yuan C J 2018 Appl. Phys. Lett. 113 121101Google Scholar

    [7]

    Ji W, Lee C H, Chen P, Hu W, Ming Y, Zhang L J, Lin T H, Chigrinov V, Lu Y Q 2016 Sci. Rep. 6 25528Google Scholar

    [8]

    Terhalle B, Langner A, Päivänranta B, Guzenko V A, David C, Ekinci Y 2011 Opt. Lett. 36 4143Google Scholar

    [9]

    Cai X L, Wang J W, Strain M J, Johnson-Morris B, Zhu J B, Sorel M, O’ Brien J L, Thompson M G, Yu S Y 2012 Science 338 363Google Scholar

    [10]

    Gambini F, Velha P, Oton C J, Faralli S, 2016 IEEE Photonics Technol. Lett. 28 2355Google Scholar

    [11]

    González N, Molina-Terriza G, Torres J P 2006 Opt. Express 14 9093Google Scholar

    [12]

    Pidishety S, Khudus M, Gregg P, Ramachandran, S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO)-Science and Innovation San Jose, California, United States, June 5–10, 2016 pSTu1 F. 2

    [13]

    Wang T, Wang F, Shi F, Pang F F, Huang, S J, Wang T Y, Zeng X L 2017 J. Lightwave Technol. 35 2161Google Scholar

    [14]

    Wu S H, Li Y, Feng L P, Zeng X L, Li W, Qiu J F, Zuo Y, Hong X B, Yu H, Chen R, Giles L P, Wu J 2018 Opt. Lett. 43 2130Google Scholar

    [15]

    Jiang Y C, Ren G B, Lian Y D, Zhu B F, Jin W X, Jian S S 2016 Opt. Lett. 41 3535Google Scholar

    [16]

    Li S H, Zhe X, Zhao R X, Shen L, Du C, Wang J 2018 IEEE Photonics J. 10 6601607Google Scholar

    [17]

    Li S H, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [18]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2017 Nanophotonics 7 287Google Scholar

    [19]

    Cao X B, Liu Y Q, Zhang L, Zhao Y H, Wang T Y 2017 Appl. Opt. 56 5167Google Scholar

    [20]

    Fu C L, Liu S, Bai Z Y, He J, Liao C R, Wang Y, Li Z L, Zhang Y, Yang K M, Yu B, Wang Y P 2018 J. Lightwave Technol. 36 1683Google Scholar

    [21]

    Wang X, Zeng J W, Sun J B, Nezhad V F, Cartwright A N, Litchinitser N M 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications San Jose, California, United States, June 8–13, 2014 pJTu4 A. 34

    [22]

    Yu J, Fu C L, Bai Z Y, Wang Y P 2021 J. Lightwave Technol. 39 1416Google Scholar

    [23]

    Wong G K L, Kang M S, Lee H W, Biancalana F, Conti C, Weiss T, Russell P St J 2012 Science 337 446Google Scholar

    [24]

    Xi X M, Wong G K L, Frosz M H, Babic F, Ahmed G, Jiang X, Euser T G, Russell P St J 2014 Optica 1 165Google Scholar

    [25]

    Russell P St J, Beravat R, Wong G K L 2017 Phil. Trans. R. Soc. A 375 20150440Google Scholar

    [26]

    Fu C L, Liu S, Wang Y, Bai Z Y, He J, Liao C R, Zhang F, Zhang F, Yu B, Gao S C, Li Z H, Wang Y P 2018 Opt. Lett. 43 1786Google Scholar

    [27]

    Zhang Y F, Li B Y, Xia C M, Hou Z Y, Zhou G Y 2020 Opt. Commun. 475 126245Google Scholar

    [28]

    Ren K L, Ren L Y, Liang J, Yang L, Xu J, Han D D, Wang Y K, Liu J H, Dong J, He H Y, Zhang W F 2021 Opt. Express 29 8441Google Scholar

    [29]

    Fujisawa T, Sato T, Saitoh K 2017 J. Lightwave Technol. 35 2894Google Scholar

    [30]

    Nicolet A, F Zolla, Ould Agha F, Guenneau S 2008 Compel 27 806Google Scholar

    [31]

    Nicolet A, Zolla F, Agha Y O, Guenneau S 2007 Wave. Random. Complex 17 559Google Scholar

    [32]

    Edavalath N N, Gnendi M C, Beravat R, Wong G K L, Frosz M H, Mnard J M, Russell P St J 2017 Opt. Lett. 42 2074Google Scholar

    [33]

    Xu M N, Zhou G Y, Chen C, Zhou G, Sheng Z C, Hou Z Y, Xia C M 2018 J. Opt. 47 428Google Scholar

    [34]

    Zhang L, Zhang K, Peng J, Deng J, Yang Y, Ma J 2018 Opt. Commun. 429 189Google Scholar

    [35]

    Kabir M A, Hassan M M, Ahmed K, Rajan M S M, Aly A H, Hossain M N, Paul B K 2020 Opt. Quant. Electron. 52 331Google Scholar

    [36]

    Ye J F, Li Y, Han Y H, Deng D, Guo Z Y, Gao J M, Sun Q Q, Liu Y, Qu S L 2016 Opt. Express 24 8310Google Scholar

    [37]

    Xi X M, Weiss T, Wong G K L, Biancalana F, Barnett S M, Padgett M J, Russell P St J 2013 Phys. Rev. Lett. 110 143903Google Scholar

    [38]

    Beravat R, Wong G K L, Xi X M, Frosz M H, Russell P St J 2016 Opt. Lett. 41 1672Google Scholar

    [39]

    Weiss T, Wong G K L, Biancalana F, Barnett S M, Xi X M, Russell P St J 2013 J. Opt. Soc. Am. B 30 2921Google Scholar

    [40]

    Liu H, Wang H R, Chen C C, Zhang W, Zhang S, Wang Q, Ding Y 2019 Opt. Fiber Technol. 47 164Google Scholar

    [41]

    Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131Google Scholar

    [42]

    Napiorkowski M, Renversez G, Urbanczyk W 2019 Opt. Express 27 5447Google Scholar

    [43]

    Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501Google Scholar

    [44]

    崔粲, 王智, 李强, 吴重庆, 王健 2019 物理学报 68 064211Google Scholar

    Cui C, Wang Z, Li Q, Wu C Q, Wang J 2019 Acta Phys. Sin. 68 064211Google Scholar

  • 图 1  光纤结构 (a) 光纤螺旋扭曲示意图; (b) 光纤仿真截面图; (c) 纤芯放大图

    Fig. 1.  Structure of optical fiber: (a) Schematic diagram of the helically twisted optical fiber; (b) simulation cross-sectional view of the optical fiber; (c) enlarged view of fiber core.

    图 2  纤芯6个超模的模场分布情况

    Fig. 2.  Mode field distributions of six supermodes in the fiber core.

    图 3  环形芯模式在z方向电场分布图 (a) ${\text{HE}}_{9, 1}^{{\text{odd}}}$模式; (b) ${\text{EH}}_{7, 1}^{{\text{even}}}$模式

    Fig. 3.  Electric field distributions of ring-core modes in z direction: (a) ${\text{HE}}_{9, 1}^{{\text{odd}}}$ mode; (b) ${\text{EH}}_{7, 1}^{{\text{even}}}$ mode.

    图 4  螺旋扭曲光纤的玻印亭矢量分布图和相位图 (a) 环形芯模式和泄漏模式的玻印亭矢量分布; (b) ${\text{HE}}_{10, 1}^{{\text{even}}}$模式 (等价于弱${\text{OAM}}_{ + 9, 1}^ - $模式)的相位图; (c) ${\text{HE}}_{5, 1}^{{\text{odd}}}$模式 (等价于弱${\text{OAM}}_{ - 4, 1}^ + $模式)的相位图

    Fig. 4.  Poynting vector distribution and phase diagrams of helically twisted fiber: (a) Poynting vector distribution of ring-core modes and leaky modes; (b) phase diagrams of ${\text{HE}}_{10, 1}^{{\text{even}}}$ mode (equivalent to ${\text{OAM}}_{ + 9, 1}^ - $ mode); (c) phase diagrams of ${\text{HE}}_{5, 1}^{{\text{odd}}}$ mode (equivalent to ${\text{OAM}}_{ - 4, 1}^ + $ mode).

    图 5  圆双折射现象 (内部图片为纤芯超模的极化状态)

    Fig. 5.  Diagram of circular birefringence (Internal pictures show the polarization of the core supermodes).

    图 6  α = 7853.982 rad/m时, 超模损耗谱中明显的损耗峰(内部图片为发生共振耦合时的模场分布) (a) λ = 1360 nm (峰a); (b) λ = 1820 (峰b和峰c)和1900 nm (峰d和峰e); (c) λ = 1940 nm (峰f); (d) λ = 2000 (峰g和峰h)和2350 nm (峰i)

    Fig. 6.  Loss peaks in loss spectra when α = 7853.982 rad/m (Internal images show the mode field distribution when resonant couplings occur): (a) λ = 1360 nm (peak a); (b) λ = 1820 (peak b and peak c) and 1900 nm (peak d and peak e); (c) λ = 1940 nm (peak f); (d) λ = 2000 (peak g and peak h) and 2350 nm (peak i).

    图 7  α = 7853.982 rad/m时, 模式的折射率与波长的变化 (a) λ = 1360, 1820和1940 nm; (b) λ = 1900, 2000和 2350 nm

    Fig. 7.  Relationship between refractive index and wavelength at α = 7853.982 rad/m: (a) λ = 1360, 1820 and 1940 nm; (b) λ = 1900, 2000 and 2350 nm.

    图 8  不同扭曲率下超模的损耗谱 (a) α = 7391.983 rad/m; (b) α = 8377.58 rad/m

    Fig. 8.  Loss spectra of supermodes at different twist rates: (a) α = 7391.983 rad/m; (b) α = 8377.58 rad/m.

    图 9  不同扭曲率下的OAM模式纯度

    Fig. 9.  Mode purity at different twist rates.

    表 1  α = 7853.982 rad/m时, 共振耦合具体情况

    Table 1.  Specific situation of resonance couplings when α = 7853.982 rad/m.

    PeaksLC/μmPeaksLC/μm
    M1 (RC, s = –1) + $ {\text{OAM}}_{ + 13, 1}^ + $ ($ {\text{EH}}_{12, 1}^{{\text{odd}}} $) = a36.20M1 (RC, s = –1) + $ {\text{OAM}}_{ + 10, 1}^ + $ ($ {\text{EH}}_{9, 1}^{{\text{odd}}} $) = h47.95
    M2 (RC, s = –1) + $ {\text{OAM}}_{ + 11, 1}^ + $ ($ {\text{EH}}_{10, 1}^{{\text{odd}}} $) = b40.81M2 (RC, s = –1) + $ {\text{OAM}}_{ - 4, 1}^ + $ ($ {\text{HE}}_{5, 1}^{{\text{odd}}} $) = i125.32
    M3 (LC, s = +1) + $ {\text{OAM}}_{ + 10, 1}^ - $ ($ {\text{HE}}_{11, 1}^{{\text{even}}} $) = g46.44
    M4 (LC, s = +1) + $ {\text{OAM}}_{ + 11, 1}^ - $ ($ {\text{HE}}_{12, 1}^{{\text{even}}} $) = c38.68
    M5 (RC, s = –1) + $ {\text{OAM}}_{ + 9, 1}^ + $ ($ {\text{EH}}_{8, 1}^{{\text{odd}}} $) = d50.18M5 (RC, s = –1) + $ {\text{OAM}}_{ + 10, 1}^ - $ ($ {\text{HE}}_{11, 1}^{{\text{even}}} $) = f36.93
    M6 (LC, s = +1) + $ {\text{OAM}}_{ + 9, 1}^ - $ ($ {\text{HE}}_{10, 1}^{{\text{even}}} $) = e47.47
    下载: 导出CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Wang J 2019 Sci. China-Phys. Mech. Astron. 62 034201Google Scholar

    [3]

    Guanghao R, Xiaoyan W, Yiping C 2015 Opt. Express 23 25707Google Scholar

    [4]

    Qiu X D, Li F S, Zhang W H, Zhu Z H, Chen L X 2018 Optica 5 208Google Scholar

    [5]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

    [6]

    Li D L, Chang C L, Nie S P, Feng S T, Ma J, Yuan C J 2018 Appl. Phys. Lett. 113 121101Google Scholar

    [7]

    Ji W, Lee C H, Chen P, Hu W, Ming Y, Zhang L J, Lin T H, Chigrinov V, Lu Y Q 2016 Sci. Rep. 6 25528Google Scholar

    [8]

    Terhalle B, Langner A, Päivänranta B, Guzenko V A, David C, Ekinci Y 2011 Opt. Lett. 36 4143Google Scholar

    [9]

    Cai X L, Wang J W, Strain M J, Johnson-Morris B, Zhu J B, Sorel M, O’ Brien J L, Thompson M G, Yu S Y 2012 Science 338 363Google Scholar

    [10]

    Gambini F, Velha P, Oton C J, Faralli S, 2016 IEEE Photonics Technol. Lett. 28 2355Google Scholar

    [11]

    González N, Molina-Terriza G, Torres J P 2006 Opt. Express 14 9093Google Scholar

    [12]

    Pidishety S, Khudus M, Gregg P, Ramachandran, S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO)-Science and Innovation San Jose, California, United States, June 5–10, 2016 pSTu1 F. 2

    [13]

    Wang T, Wang F, Shi F, Pang F F, Huang, S J, Wang T Y, Zeng X L 2017 J. Lightwave Technol. 35 2161Google Scholar

    [14]

    Wu S H, Li Y, Feng L P, Zeng X L, Li W, Qiu J F, Zuo Y, Hong X B, Yu H, Chen R, Giles L P, Wu J 2018 Opt. Lett. 43 2130Google Scholar

    [15]

    Jiang Y C, Ren G B, Lian Y D, Zhu B F, Jin W X, Jian S S 2016 Opt. Lett. 41 3535Google Scholar

    [16]

    Li S H, Zhe X, Zhao R X, Shen L, Du C, Wang J 2018 IEEE Photonics J. 10 6601607Google Scholar

    [17]

    Li S H, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [18]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2017 Nanophotonics 7 287Google Scholar

    [19]

    Cao X B, Liu Y Q, Zhang L, Zhao Y H, Wang T Y 2017 Appl. Opt. 56 5167Google Scholar

    [20]

    Fu C L, Liu S, Bai Z Y, He J, Liao C R, Wang Y, Li Z L, Zhang Y, Yang K M, Yu B, Wang Y P 2018 J. Lightwave Technol. 36 1683Google Scholar

    [21]

    Wang X, Zeng J W, Sun J B, Nezhad V F, Cartwright A N, Litchinitser N M 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications San Jose, California, United States, June 8–13, 2014 pJTu4 A. 34

    [22]

    Yu J, Fu C L, Bai Z Y, Wang Y P 2021 J. Lightwave Technol. 39 1416Google Scholar

    [23]

    Wong G K L, Kang M S, Lee H W, Biancalana F, Conti C, Weiss T, Russell P St J 2012 Science 337 446Google Scholar

    [24]

    Xi X M, Wong G K L, Frosz M H, Babic F, Ahmed G, Jiang X, Euser T G, Russell P St J 2014 Optica 1 165Google Scholar

    [25]

    Russell P St J, Beravat R, Wong G K L 2017 Phil. Trans. R. Soc. A 375 20150440Google Scholar

    [26]

    Fu C L, Liu S, Wang Y, Bai Z Y, He J, Liao C R, Zhang F, Zhang F, Yu B, Gao S C, Li Z H, Wang Y P 2018 Opt. Lett. 43 1786Google Scholar

    [27]

    Zhang Y F, Li B Y, Xia C M, Hou Z Y, Zhou G Y 2020 Opt. Commun. 475 126245Google Scholar

    [28]

    Ren K L, Ren L Y, Liang J, Yang L, Xu J, Han D D, Wang Y K, Liu J H, Dong J, He H Y, Zhang W F 2021 Opt. Express 29 8441Google Scholar

    [29]

    Fujisawa T, Sato T, Saitoh K 2017 J. Lightwave Technol. 35 2894Google Scholar

    [30]

    Nicolet A, F Zolla, Ould Agha F, Guenneau S 2008 Compel 27 806Google Scholar

    [31]

    Nicolet A, Zolla F, Agha Y O, Guenneau S 2007 Wave. Random. Complex 17 559Google Scholar

    [32]

    Edavalath N N, Gnendi M C, Beravat R, Wong G K L, Frosz M H, Mnard J M, Russell P St J 2017 Opt. Lett. 42 2074Google Scholar

    [33]

    Xu M N, Zhou G Y, Chen C, Zhou G, Sheng Z C, Hou Z Y, Xia C M 2018 J. Opt. 47 428Google Scholar

    [34]

    Zhang L, Zhang K, Peng J, Deng J, Yang Y, Ma J 2018 Opt. Commun. 429 189Google Scholar

    [35]

    Kabir M A, Hassan M M, Ahmed K, Rajan M S M, Aly A H, Hossain M N, Paul B K 2020 Opt. Quant. Electron. 52 331Google Scholar

    [36]

    Ye J F, Li Y, Han Y H, Deng D, Guo Z Y, Gao J M, Sun Q Q, Liu Y, Qu S L 2016 Opt. Express 24 8310Google Scholar

    [37]

    Xi X M, Weiss T, Wong G K L, Biancalana F, Barnett S M, Padgett M J, Russell P St J 2013 Phys. Rev. Lett. 110 143903Google Scholar

    [38]

    Beravat R, Wong G K L, Xi X M, Frosz M H, Russell P St J 2016 Opt. Lett. 41 1672Google Scholar

    [39]

    Weiss T, Wong G K L, Biancalana F, Barnett S M, Xi X M, Russell P St J 2013 J. Opt. Soc. Am. B 30 2921Google Scholar

    [40]

    Liu H, Wang H R, Chen C C, Zhang W, Zhang S, Wang Q, Ding Y 2019 Opt. Fiber Technol. 47 164Google Scholar

    [41]

    Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131Google Scholar

    [42]

    Napiorkowski M, Renversez G, Urbanczyk W 2019 Opt. Express 27 5447Google Scholar

    [43]

    Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501Google Scholar

    [44]

    崔粲, 王智, 李强, 吴重庆, 王健 2019 物理学报 68 064211Google Scholar

    Cui C, Wang Z, Li Q, Wu C Q, Wang J 2019 Acta Phys. Sin. 68 064211Google Scholar

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [3] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [4] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器. 物理学报, 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [7] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [8] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [9] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [10] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [11] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [12] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [13] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [14] 张佳, 徐旭明, 何灵娟, 于天宝, 郭浩. 基于光子晶体共振耦合的四波长波分复用/解复用器. 物理学报, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [15] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [16] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  3410
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-17
  • 修回日期:  2023-05-05
  • 上网日期:  2023-05-06
  • 刊出日期:  2023-07-05

/

返回文章
返回