-
针对螺旋扭曲的单包层-少芯光子晶体光纤在生成轨道角动量(orbital angular momentum, OAM)方面存在的不足, 首次将三芯和内外空气孔不均匀的双包层结构引入光子晶体光纤, 并通过螺旋扭曲实现了高阶OAM模式的生成. 该光纤通过引入特殊设计的双包层结构有望降低生成的OAM模式的损耗, 而围绕中心呈正三角分布的三个纤芯有望增加生成的OAM模式的数量. 在光学变换原理的基础上, 通过有限元方法对该光纤进行系统的分析, 结果发现, 当扭曲率α = 7853.98 rad/m时, 生成的OAM模式包括“OAM–4,1, OAM+9,1, OAM+10,1, OAM+11,1, OAM+13,1”, 其中+13阶是目前利用螺旋扭曲光纤生成的OAM模式中最高的阶数, 且OAM模式的损耗均小于1.64×10–3 dB/m, 比已有文献中最低的OAM模式损耗(Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131)至少降低2个数量级, 以及OAM模式纯度均大于93%. 进一步研究表明, 轨道角动量的生成依赖于纤芯超模与环形芯模式的共振耦合, 而生成的OAM模式阶数的奇偶性与纤芯超模和环形芯模式的极化方向有关.Aiming at the shortcomings of helically twisted single-cladding-few-core photonic crystal fibers in generating orbital angular momentum (OAM), the double-cladding and three-core structures with non-uniform inner and outer air holes are introduced into a photonic crystal fiber for the first time and the generation of high-order OAM modes through helical twisting is realized. The fiber is expected to reduce the losses of the generated OAM modes by introducing a specially designed double-cladding structure, while the three cores distributed in a regular triangle around the center are expected to increase the number of generated OAM modes. On the basis of optical transformation theory, the optical fiber is systematically analyzed by the finite element method. It is found that with the twist rate α = 7853.98 rad/m, the generated OAM modes include “OAM–4,1, OAM+9,1, OAM+10,1, OAM+11,1, OAM+13,1”, where +13 is the highest order in the OAM modes currently generated by using helically twisted fibers. And the losses of OAM modes are all less than 1.64×10–3 dB/m, which is at least two orders of magnitude lower than the lowest OAM mode loss reported in the existing references (Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131), and their purity is greater than 93%. Further studies show that the generation of orbital angular momentum depends on the resonant coupling between the core supermode and the ring-core mode, and the parity of the order of the generated OAM modes is related to the polarization direction of the fiber core supermode and the ring-core mode.
-
Keywords:
- orbital angular momentum /
- helically twisted optical fiber /
- resonance coupling /
- circular birefringence
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Wang J 2019 Sci. China-Phys. Mech. Astron. 62 034201Google Scholar
[3] Guanghao R, Xiaoyan W, Yiping C 2015 Opt. Express 23 25707Google Scholar
[4] Qiu X D, Li F S, Zhang W H, Zhu Z H, Chen L X 2018 Optica 5 208Google Scholar
[5] Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar
[6] Li D L, Chang C L, Nie S P, Feng S T, Ma J, Yuan C J 2018 Appl. Phys. Lett. 113 121101Google Scholar
[7] Ji W, Lee C H, Chen P, Hu W, Ming Y, Zhang L J, Lin T H, Chigrinov V, Lu Y Q 2016 Sci. Rep. 6 25528Google Scholar
[8] Terhalle B, Langner A, Päivänranta B, Guzenko V A, David C, Ekinci Y 2011 Opt. Lett. 36 4143Google Scholar
[9] Cai X L, Wang J W, Strain M J, Johnson-Morris B, Zhu J B, Sorel M, O’ Brien J L, Thompson M G, Yu S Y 2012 Science 338 363Google Scholar
[10] Gambini F, Velha P, Oton C J, Faralli S, 2016 IEEE Photonics Technol. Lett. 28 2355Google Scholar
[11] González N, Molina-Terriza G, Torres J P 2006 Opt. Express 14 9093Google Scholar
[12] Pidishety S, Khudus M, Gregg P, Ramachandran, S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO)-Science and Innovation San Jose, California, United States, June 5–10, 2016 pSTu1 F. 2
[13] Wang T, Wang F, Shi F, Pang F F, Huang, S J, Wang T Y, Zeng X L 2017 J. Lightwave Technol. 35 2161Google Scholar
[14] Wu S H, Li Y, Feng L P, Zeng X L, Li W, Qiu J F, Zuo Y, Hong X B, Yu H, Chen R, Giles L P, Wu J 2018 Opt. Lett. 43 2130Google Scholar
[15] Jiang Y C, Ren G B, Lian Y D, Zhu B F, Jin W X, Jian S S 2016 Opt. Lett. 41 3535Google Scholar
[16] Li S H, Zhe X, Zhao R X, Shen L, Du C, Wang J 2018 IEEE Photonics J. 10 6601607Google Scholar
[17] Li S H, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[18] Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2017 Nanophotonics 7 287Google Scholar
[19] Cao X B, Liu Y Q, Zhang L, Zhao Y H, Wang T Y 2017 Appl. Opt. 56 5167Google Scholar
[20] Fu C L, Liu S, Bai Z Y, He J, Liao C R, Wang Y, Li Z L, Zhang Y, Yang K M, Yu B, Wang Y P 2018 J. Lightwave Technol. 36 1683Google Scholar
[21] Wang X, Zeng J W, Sun J B, Nezhad V F, Cartwright A N, Litchinitser N M 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications San Jose, California, United States, June 8–13, 2014 pJTu4 A. 34
[22] Yu J, Fu C L, Bai Z Y, Wang Y P 2021 J. Lightwave Technol. 39 1416Google Scholar
[23] Wong G K L, Kang M S, Lee H W, Biancalana F, Conti C, Weiss T, Russell P St J 2012 Science 337 446Google Scholar
[24] Xi X M, Wong G K L, Frosz M H, Babic F, Ahmed G, Jiang X, Euser T G, Russell P St J 2014 Optica 1 165Google Scholar
[25] Russell P St J, Beravat R, Wong G K L 2017 Phil. Trans. R. Soc. A 375 20150440Google Scholar
[26] Fu C L, Liu S, Wang Y, Bai Z Y, He J, Liao C R, Zhang F, Zhang F, Yu B, Gao S C, Li Z H, Wang Y P 2018 Opt. Lett. 43 1786Google Scholar
[27] Zhang Y F, Li B Y, Xia C M, Hou Z Y, Zhou G Y 2020 Opt. Commun. 475 126245Google Scholar
[28] Ren K L, Ren L Y, Liang J, Yang L, Xu J, Han D D, Wang Y K, Liu J H, Dong J, He H Y, Zhang W F 2021 Opt. Express 29 8441Google Scholar
[29] Fujisawa T, Sato T, Saitoh K 2017 J. Lightwave Technol. 35 2894Google Scholar
[30] Nicolet A, F Zolla, Ould Agha F, Guenneau S 2008 Compel 27 806Google Scholar
[31] Nicolet A, Zolla F, Agha Y O, Guenneau S 2007 Wave. Random. Complex 17 559Google Scholar
[32] Edavalath N N, Gnendi M C, Beravat R, Wong G K L, Frosz M H, Mnard J M, Russell P St J 2017 Opt. Lett. 42 2074Google Scholar
[33] Xu M N, Zhou G Y, Chen C, Zhou G, Sheng Z C, Hou Z Y, Xia C M 2018 J. Opt. 47 428Google Scholar
[34] Zhang L, Zhang K, Peng J, Deng J, Yang Y, Ma J 2018 Opt. Commun. 429 189Google Scholar
[35] Kabir M A, Hassan M M, Ahmed K, Rajan M S M, Aly A H, Hossain M N, Paul B K 2020 Opt. Quant. Electron. 52 331Google Scholar
[36] Ye J F, Li Y, Han Y H, Deng D, Guo Z Y, Gao J M, Sun Q Q, Liu Y, Qu S L 2016 Opt. Express 24 8310Google Scholar
[37] Xi X M, Weiss T, Wong G K L, Biancalana F, Barnett S M, Padgett M J, Russell P St J 2013 Phys. Rev. Lett. 110 143903Google Scholar
[38] Beravat R, Wong G K L, Xi X M, Frosz M H, Russell P St J 2016 Opt. Lett. 41 1672Google Scholar
[39] Weiss T, Wong G K L, Biancalana F, Barnett S M, Xi X M, Russell P St J 2013 J. Opt. Soc. Am. B 30 2921Google Scholar
[40] Liu H, Wang H R, Chen C C, Zhang W, Zhang S, Wang Q, Ding Y 2019 Opt. Fiber Technol. 47 164Google Scholar
[41] Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131Google Scholar
[42] Napiorkowski M, Renversez G, Urbanczyk W 2019 Opt. Express 27 5447Google Scholar
[43] Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501Google Scholar
[44] 崔粲, 王智, 李强, 吴重庆, 王健 2019 物理学报 68 064211Google Scholar
Cui C, Wang Z, Li Q, Wu C Q, Wang J 2019 Acta Phys. Sin. 68 064211Google Scholar
-
图 4 螺旋扭曲光纤的玻印亭矢量分布图和相位图 (a) 环形芯模式和泄漏模式的玻印亭矢量分布; (b)
${\text{HE}}_{10, 1}^{{\text{even}}}$ 模式 (等价于弱${\text{OAM}}_{ + 9, 1}^ - $ 模式)的相位图; (c)${\text{HE}}_{5, 1}^{{\text{odd}}}$ 模式 (等价于弱${\text{OAM}}_{ - 4, 1}^ + $ 模式)的相位图Fig. 4. Poynting vector distribution and phase diagrams of helically twisted fiber: (a) Poynting vector distribution of ring-core modes and leaky modes; (b) phase diagrams of
${\text{HE}}_{10, 1}^{{\text{even}}}$ mode (equivalent to${\text{OAM}}_{ + 9, 1}^ - $ mode); (c) phase diagrams of${\text{HE}}_{5, 1}^{{\text{odd}}}$ mode (equivalent to${\text{OAM}}_{ - 4, 1}^ + $ mode).图 6 α = 7853.982 rad/m时, 超模损耗谱中明显的损耗峰(内部图片为发生共振耦合时的模场分布) (a) λ = 1360 nm (峰a); (b) λ = 1820 (峰b和峰c)和1900 nm (峰d和峰e); (c) λ = 1940 nm (峰f); (d) λ = 2000 (峰g和峰h)和2350 nm (峰i)
Fig. 6. Loss peaks in loss spectra when α = 7853.982 rad/m (Internal images show the mode field distribution when resonant couplings occur): (a) λ = 1360 nm (peak a); (b) λ = 1820 (peak b and peak c) and 1900 nm (peak d and peak e); (c) λ = 1940 nm (peak f); (d) λ = 2000 (peak g and peak h) and 2350 nm (peak i).
表 1 α = 7853.982 rad/m时, 共振耦合具体情况
Table 1. Specific situation of resonance couplings when α = 7853.982 rad/m.
Peaks LC/μm Peaks LC/μm M1 (RC, s = –1) + $ {\text{OAM}}_{ + 13, 1}^ + $ ($ {\text{EH}}_{12, 1}^{{\text{odd}}} $) = a 36.20 M1 (RC, s = –1) + $ {\text{OAM}}_{ + 10, 1}^ + $ ($ {\text{EH}}_{9, 1}^{{\text{odd}}} $) = h 47.95 M2 (RC, s = –1) + $ {\text{OAM}}_{ + 11, 1}^ + $ ($ {\text{EH}}_{10, 1}^{{\text{odd}}} $) = b 40.81 M2 (RC, s = –1) + $ {\text{OAM}}_{ - 4, 1}^ + $ ($ {\text{HE}}_{5, 1}^{{\text{odd}}} $) = i 125.32 M3 (LC, s = +1) + $ {\text{OAM}}_{ + 10, 1}^ - $ ($ {\text{HE}}_{11, 1}^{{\text{even}}} $) = g 46.44 — — M4 (LC, s = +1) + $ {\text{OAM}}_{ + 11, 1}^ - $ ($ {\text{HE}}_{12, 1}^{{\text{even}}} $) = c 38.68 — — M5 (RC, s = –1) + $ {\text{OAM}}_{ + 9, 1}^ + $ ($ {\text{EH}}_{8, 1}^{{\text{odd}}} $) = d 50.18 M5 (RC, s = –1) + $ {\text{OAM}}_{ + 10, 1}^ - $ ($ {\text{HE}}_{11, 1}^{{\text{even}}} $) = f 36.93 M6 (LC, s = +1) + $ {\text{OAM}}_{ + 9, 1}^ - $ ($ {\text{HE}}_{10, 1}^{{\text{even}}} $) = e 47.47 — — -
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Wang J 2019 Sci. China-Phys. Mech. Astron. 62 034201Google Scholar
[3] Guanghao R, Xiaoyan W, Yiping C 2015 Opt. Express 23 25707Google Scholar
[4] Qiu X D, Li F S, Zhang W H, Zhu Z H, Chen L X 2018 Optica 5 208Google Scholar
[5] Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar
[6] Li D L, Chang C L, Nie S P, Feng S T, Ma J, Yuan C J 2018 Appl. Phys. Lett. 113 121101Google Scholar
[7] Ji W, Lee C H, Chen P, Hu W, Ming Y, Zhang L J, Lin T H, Chigrinov V, Lu Y Q 2016 Sci. Rep. 6 25528Google Scholar
[8] Terhalle B, Langner A, Päivänranta B, Guzenko V A, David C, Ekinci Y 2011 Opt. Lett. 36 4143Google Scholar
[9] Cai X L, Wang J W, Strain M J, Johnson-Morris B, Zhu J B, Sorel M, O’ Brien J L, Thompson M G, Yu S Y 2012 Science 338 363Google Scholar
[10] Gambini F, Velha P, Oton C J, Faralli S, 2016 IEEE Photonics Technol. Lett. 28 2355Google Scholar
[11] González N, Molina-Terriza G, Torres J P 2006 Opt. Express 14 9093Google Scholar
[12] Pidishety S, Khudus M, Gregg P, Ramachandran, S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO)-Science and Innovation San Jose, California, United States, June 5–10, 2016 pSTu1 F. 2
[13] Wang T, Wang F, Shi F, Pang F F, Huang, S J, Wang T Y, Zeng X L 2017 J. Lightwave Technol. 35 2161Google Scholar
[14] Wu S H, Li Y, Feng L P, Zeng X L, Li W, Qiu J F, Zuo Y, Hong X B, Yu H, Chen R, Giles L P, Wu J 2018 Opt. Lett. 43 2130Google Scholar
[15] Jiang Y C, Ren G B, Lian Y D, Zhu B F, Jin W X, Jian S S 2016 Opt. Lett. 41 3535Google Scholar
[16] Li S H, Zhe X, Zhao R X, Shen L, Du C, Wang J 2018 IEEE Photonics J. 10 6601607Google Scholar
[17] Li S H, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[18] Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2017 Nanophotonics 7 287Google Scholar
[19] Cao X B, Liu Y Q, Zhang L, Zhao Y H, Wang T Y 2017 Appl. Opt. 56 5167Google Scholar
[20] Fu C L, Liu S, Bai Z Y, He J, Liao C R, Wang Y, Li Z L, Zhang Y, Yang K M, Yu B, Wang Y P 2018 J. Lightwave Technol. 36 1683Google Scholar
[21] Wang X, Zeng J W, Sun J B, Nezhad V F, Cartwright A N, Litchinitser N M 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications San Jose, California, United States, June 8–13, 2014 pJTu4 A. 34
[22] Yu J, Fu C L, Bai Z Y, Wang Y P 2021 J. Lightwave Technol. 39 1416Google Scholar
[23] Wong G K L, Kang M S, Lee H W, Biancalana F, Conti C, Weiss T, Russell P St J 2012 Science 337 446Google Scholar
[24] Xi X M, Wong G K L, Frosz M H, Babic F, Ahmed G, Jiang X, Euser T G, Russell P St J 2014 Optica 1 165Google Scholar
[25] Russell P St J, Beravat R, Wong G K L 2017 Phil. Trans. R. Soc. A 375 20150440Google Scholar
[26] Fu C L, Liu S, Wang Y, Bai Z Y, He J, Liao C R, Zhang F, Zhang F, Yu B, Gao S C, Li Z H, Wang Y P 2018 Opt. Lett. 43 1786Google Scholar
[27] Zhang Y F, Li B Y, Xia C M, Hou Z Y, Zhou G Y 2020 Opt. Commun. 475 126245Google Scholar
[28] Ren K L, Ren L Y, Liang J, Yang L, Xu J, Han D D, Wang Y K, Liu J H, Dong J, He H Y, Zhang W F 2021 Opt. Express 29 8441Google Scholar
[29] Fujisawa T, Sato T, Saitoh K 2017 J. Lightwave Technol. 35 2894Google Scholar
[30] Nicolet A, F Zolla, Ould Agha F, Guenneau S 2008 Compel 27 806Google Scholar
[31] Nicolet A, Zolla F, Agha Y O, Guenneau S 2007 Wave. Random. Complex 17 559Google Scholar
[32] Edavalath N N, Gnendi M C, Beravat R, Wong G K L, Frosz M H, Mnard J M, Russell P St J 2017 Opt. Lett. 42 2074Google Scholar
[33] Xu M N, Zhou G Y, Chen C, Zhou G, Sheng Z C, Hou Z Y, Xia C M 2018 J. Opt. 47 428Google Scholar
[34] Zhang L, Zhang K, Peng J, Deng J, Yang Y, Ma J 2018 Opt. Commun. 429 189Google Scholar
[35] Kabir M A, Hassan M M, Ahmed K, Rajan M S M, Aly A H, Hossain M N, Paul B K 2020 Opt. Quant. Electron. 52 331Google Scholar
[36] Ye J F, Li Y, Han Y H, Deng D, Guo Z Y, Gao J M, Sun Q Q, Liu Y, Qu S L 2016 Opt. Express 24 8310Google Scholar
[37] Xi X M, Weiss T, Wong G K L, Biancalana F, Barnett S M, Padgett M J, Russell P St J 2013 Phys. Rev. Lett. 110 143903Google Scholar
[38] Beravat R, Wong G K L, Xi X M, Frosz M H, Russell P St J 2016 Opt. Lett. 41 1672Google Scholar
[39] Weiss T, Wong G K L, Biancalana F, Barnett S M, Xi X M, Russell P St J 2013 J. Opt. Soc. Am. B 30 2921Google Scholar
[40] Liu H, Wang H R, Chen C C, Zhang W, Zhang S, Wang Q, Ding Y 2019 Opt. Fiber Technol. 47 164Google Scholar
[41] Napiorkowski M, Urbanczyk W S 2018 Opt. Express 26 12131Google Scholar
[42] Napiorkowski M, Renversez G, Urbanczyk W 2019 Opt. Express 27 5447Google Scholar
[43] Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501Google Scholar
[44] 崔粲, 王智, 李强, 吴重庆, 王健 2019 物理学报 68 064211Google Scholar
Cui C, Wang Z, Li Q, Wu C Q, Wang J 2019 Acta Phys. Sin. 68 064211Google Scholar
计量
- 文章访问数: 2916
- PDF下载量: 79
- 被引次数: 0