搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论自旋流体力学

浦实 黄旭光

引用本文:
Citation:

相对论自旋流体力学

浦实, 黄旭光

Relativistic spin hydrodynamics

Pu Shi, Huang Xu-Guang
PDF
HTML
导出引用
  • 近年来, 随着重离子碰撞实验中超子自旋极化与矢量介子自旋排列现象的发现, 关于夸克胶子物质中自旋输运的理论研究也得到蓬勃发展, 其中包括相对论自旋流体力学, 它是描述自旋输运的流体力学理论. 本文对相对论自旋流体力学的近期发展进行了综述, 主要包括以下内容: 1)相对论自旋流体力学基本方程的推导, 包括宏观的唯象学推导、基于有效场论的推导以及基于输运理论的推导; 2)该理论框架的一些特殊性质, 包括能动量张量中的反对称结构以及赝规范变换性质等; 3)在Bjorken和Gubser膨胀体系中的解析解及其对于重离子碰撞物理的意义.
    In recent years, due to the discoveries of hyperon spin polarization and vector meson spin alignment in relativistic heavy-ion collision experiments, the spin transports in quark-gluon matter has received intensive studies. The relativistic spin hydrodynamics is one of the important theoretical frameworks to describe the spin transports, which encodes the spin degree of freedom into a hydrodynamic theory. The relativistic spin hydrodynamics have the conservation equations for energy-momentum tensor, currents and total angular momentum. In this article, we give an overview of the recent progresses of the relativistic spin hydrodynamics. We focus on the following topics: 1) The derivation of the relativistic spin hydrodynamic equations, including the phenomenological approach, the effective theory method, and the kinetic approach, 2) Some special properties of spin hydrodynamics, especially the asymmetric energy-momentum tensor and the pseudogauge transformation, and 3) The analytical solutions to the relativistic spin hydrodynamics for systems under Bjorken and Gubser expansion.
      通信作者: 黄旭光, huangxuguang@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1604900)、国家自然科学基金(批准号: 12225502, 12075061, 12147101, 12075235, 12135011)和上海市自然科学基金(批准号: 20ZR1404100)资助的课题
      Corresponding author: Huang Xu-Guang, huangxuguang@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1604900), the National Natural Science Foundation of China (Grant Nos. 12225502, 12075061, 12147101, 12075235, 12135011), and the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1404100)
    [1]

    Deng W T, Huang X G 2016 Phys. Rev. C 93 064907Google Scholar

    [2]

    Jiang Y, Lin Z W, Liao J 2016 Phys. Rev. C 94 044910Google Scholar

    [3]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [4]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [5]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar

    [6]

    Adam J, Adamczyk L, Adams J R, et al. 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [7]

    STAR Collaboration 2023 Nature 614 244Google Scholar

    [8]

    ALICE Collaboration 2022 arXiv: 2204.10171

    [9]

    Ma Y G 2023 Nucl. Sci. Technol. 34 16Google Scholar

    [10]

    Wang X N 2023 Nucl. Sci. Technol. 34 15Google Scholar

    [11]

    Liu Y C, Huang X G 2020 Nucl. Sci. Technol. 31 56Google Scholar

    [12]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [13]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401

    [14]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar

    [15]

    江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威 2023 物理学报 72 072504Google Scholar

    Jiang Z F, Wu X Y, Yu H Q, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72 072504Google Scholar

    [16]

    赵新丽, 马国亮, 马余刚 2023 物理学报 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted

    [17]

    盛欣力, 梁作堂, 王群 2023 物理学报 Accepted

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. Accepted

    [18]

    尹伊 2023 物理学报 Accepted

    Yin Y 2023 Acta Phys. Sin. Accepted

    [19]

    Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

    [20]

    高建华, 盛欣力, 王群, 庄鹏飞 2023 物理学报 Accepted

    Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta Phys. Sin. Accepted

    [21]

    Takahashi R, Matsuo M, Ono M, et al. 2016 Nat. Phys. 12 52Google Scholar

    [22]

    Jepsen P N, Amato-Grill J, Dimitrova I, Ho W W, Demler E, Ketterle W 2020 Nature 588 403Google Scholar

    [23]

    Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar

    [24]

    Fukushima K, Pu S 2021 Phys. Lett. B 817 136346Google Scholar

    [25]

    Israel W, Stewart J M 1979 Ann. Phys. 118 341Google Scholar

    [26]

    Becattini F, Bucciantini L, Grossi E, Tinti L 2015 Eur. Phys. J. C 75 191Google Scholar

    [27]

    Glorioso P, Liu H 2016 arXiv: 1612.07705

    [28]

    Glorioso P, Crossley M, Liu H 2017 JHEP 09 096

    [29]

    Son D T, Surowka P 2009 Phys. Rev. Lett. 103 191601Google Scholar

    [30]

    Becattini F, Tinti L 2011 Phys. Rev. D 84 025013Google Scholar

    [31]

    Becattini F, Tinti L 2013 Phys. Rev. D 87 025029Google Scholar

    [32]

    Becattini F, Florkowski W, Speranza E 2019 Phys. Lett. B 789 419Google Scholar

    [33]

    Kovtun P 2012 J. Phys. A 45 473001Google Scholar

    [34]

    Fukuda M, Ichikawa K, Senami M, Tachibana A 2016 AIP Adv. 6 025108Google Scholar

    [35]

    Crossley M, Glorioso P, Liu H 2017 JHEP 09 095

    [36]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150

    [37]

    Gallegos A D, Gürsoy U, Yarom A 2021 SciPost Phys. 11 41Google Scholar

    [38]

    Gallegos A D, Gürsoy U, Yarom A 2022 arXiv: 2203.05044

    [39]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [40]

    Heinz U W 1983 Phys. Rev. Lett. 51 351Google Scholar

    [41]

    Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706Google Scholar

    [42]

    Vasak D, Gyulassy M, Elze H T 1987 Annals Phys. 173 462Google Scholar

    [43]

    Sheng X L 2019 arXiv: 1912.01169

    [44]

    Sheng X L, Wang Q, Huang X G 2020 Phys. Rev. D 102 025019Google Scholar

    [45]

    Yang D L, Hattori K, Hidaka Y 2020 JHEP 07 070

    [46]

    Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar

    [47]

    Sheng X L, Weickgenannt N, Speranza E, Rischke D H, Wa ng Q 2021 Phys. Rev. D 104 016029Google Scholar

    [48]

    Wang Z Y, Zhuang P F 2021 arXiv: 2105.00915

    [49]

    Fang S, Pu S, Yang D L 2022 Phys. Rev. D 106 016002Google Scholar

    [50]

    Gao J H, Liang Z T 2019 Phys. Rev. D 100 056021Google Scholar

    [51]

    Weickgenannt N, Sheng X L, Speranza E, Wang Q, Rischke D H 2019 Phys. Rev. D 100 056018Google Scholar

    [52]

    Hattori K, Hidaka Y, Yang D L 2019 Phys. Rev. D 100 096011Google Scholar

    [53]

    Wang Z, Guo X, Shi S, Zhuang P F 2019 Phys. Rev. D 100 014015Google Scholar

    [54]

    Liu Y C, Mameda K, Huang X G 2020 Chin. Phys. C 44 094101Google Scholar

    [55]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Ann. Phys. 338 32Google Scholar

    [56]

    Romatschke P, Romatschke U 2019 Relativistic Fluid Dynamics In and Out of Equilibrium (Cambridge: Cambridge University Press)

    [57]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Rev. D 103 014030Google Scholar

    [58]

    Wang D L, Fang S, Pu S 2021 Phys. Rev. D 104 114043Google Scholar

    [59]

    Wang D L, Xie X Q, Fang S, Pu S 2022 Phys. Rev. D 105 114050Google Scholar

    [60]

    Gubser S S, Yarom A 2011 Nucl. Phys. B 846 469Google Scholar

    [61]

    Gubser S S 2010 Phys. Rev. D 82 085027Google Scholar

    [62]

    Montenegro D, Torrieri G 2019 Phys. Rev. D 100 056011Google Scholar

    [63]

    Montenegro D, Tinti L, Torrieri G 2017 Phys. Rev. D 96 056012AGoogle Scholar

    [64]

    Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar

    [65]

    Florkowski W, Kumar A, Ryblewski R 2019 Prog. Part. Nucl. Phys. 108 103709Google Scholar

    [66]

    Li S, Yee H U 2019 Phys. Rev. D 100 056022Google Scholar

    [67]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096Google Scholar

    [68]

    Montenegro D, Torrieri G 2020 Phys. Rev. D 102 036007Google Scholar

    [69]

    Li S, Stephanov M A, Yee H U 2021 Phys. Rev. Lett. 127 082302Google Scholar

    [70]

    Shi S, Gale C, Jeon S 2021 Phys. Rev. C 103 044906Google Scholar

    [71]

    She D, Huang A, Hou D F, Liao J F 2022 Sci. Bull. 67 2265Google Scholar

    [72]

    Hu J 2021 Phys. Rev. D 103 116015Google Scholar

    [73]

    Hu J 2022 Phys. Rev. D 105 076009Google Scholar

    [74]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2022 JHEP 08 263

    [75]

    Singh R, Shokri M, Mehr S M A T 2022 arXiv: 2202.11504

    [76]

    Daher A, Das A, Florkowski W, Ryblewski R 2022 arXiv: 2202.12609

    [77]

    Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar

    [78]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2022 Phys. Rev. Lett. 129 192301Google Scholar

    [79]

    Cao Z, Hattori K, Hongo M, Huang X G, Taya H 2022 PTEP 2022 071D

    [80]

    Liu Y C, Huang X G 2022 Sci. China Phys. Mech. Astron. 65 272011Google Scholar

  • [1]

    Deng W T, Huang X G 2016 Phys. Rev. C 93 064907Google Scholar

    [2]

    Jiang Y, Lin Z W, Liao J 2016 Phys. Rev. C 94 044910Google Scholar

    [3]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [4]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [5]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar

    [6]

    Adam J, Adamczyk L, Adams J R, et al. 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [7]

    STAR Collaboration 2023 Nature 614 244Google Scholar

    [8]

    ALICE Collaboration 2022 arXiv: 2204.10171

    [9]

    Ma Y G 2023 Nucl. Sci. Technol. 34 16Google Scholar

    [10]

    Wang X N 2023 Nucl. Sci. Technol. 34 15Google Scholar

    [11]

    Liu Y C, Huang X G 2020 Nucl. Sci. Technol. 31 56Google Scholar

    [12]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [13]

    孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta Phys. Sin. 72 072401

    [14]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501Google Scholar

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta Phys. Sin. 72 072501Google Scholar

    [15]

    江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威 2023 物理学报 72 072504Google Scholar

    Jiang Z F, Wu X Y, Yu H Q, Cao S S, Zhang B W 2023 Acta Phys. Sin. 72 072504Google Scholar

    [16]

    赵新丽, 马国亮, 马余刚 2023 物理学报 Accepted

    Zhao X L, Ma G L, Ma Y G 2023 Acta Phys. Sin. Accepted

    [17]

    盛欣力, 梁作堂, 王群 2023 物理学报 Accepted

    Sheng X L, Liang Z T, Wang Q 2023 Acta Phys. Sin. Accepted

    [18]

    尹伊 2023 物理学报 Accepted

    Yin Y 2023 Acta Phys. Sin. Accepted

    [19]

    Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar

    [20]

    高建华, 盛欣力, 王群, 庄鹏飞 2023 物理学报 Accepted

    Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta Phys. Sin. Accepted

    [21]

    Takahashi R, Matsuo M, Ono M, et al. 2016 Nat. Phys. 12 52Google Scholar

    [22]

    Jepsen P N, Amato-Grill J, Dimitrova I, Ho W W, Demler E, Ketterle W 2020 Nature 588 403Google Scholar

    [23]

    Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar

    [24]

    Fukushima K, Pu S 2021 Phys. Lett. B 817 136346Google Scholar

    [25]

    Israel W, Stewart J M 1979 Ann. Phys. 118 341Google Scholar

    [26]

    Becattini F, Bucciantini L, Grossi E, Tinti L 2015 Eur. Phys. J. C 75 191Google Scholar

    [27]

    Glorioso P, Liu H 2016 arXiv: 1612.07705

    [28]

    Glorioso P, Crossley M, Liu H 2017 JHEP 09 096

    [29]

    Son D T, Surowka P 2009 Phys. Rev. Lett. 103 191601Google Scholar

    [30]

    Becattini F, Tinti L 2011 Phys. Rev. D 84 025013Google Scholar

    [31]

    Becattini F, Tinti L 2013 Phys. Rev. D 87 025029Google Scholar

    [32]

    Becattini F, Florkowski W, Speranza E 2019 Phys. Lett. B 789 419Google Scholar

    [33]

    Kovtun P 2012 J. Phys. A 45 473001Google Scholar

    [34]

    Fukuda M, Ichikawa K, Senami M, Tachibana A 2016 AIP Adv. 6 025108Google Scholar

    [35]

    Crossley M, Glorioso P, Liu H 2017 JHEP 09 095

    [36]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150

    [37]

    Gallegos A D, Gürsoy U, Yarom A 2021 SciPost Phys. 11 41Google Scholar

    [38]

    Gallegos A D, Gürsoy U, Yarom A 2022 arXiv: 2203.05044

    [39]

    Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar

    [40]

    Heinz U W 1983 Phys. Rev. Lett. 51 351Google Scholar

    [41]

    Elze H T, Gyulassy M, Vasak D 1986 Nucl. Phys. B 276 706Google Scholar

    [42]

    Vasak D, Gyulassy M, Elze H T 1987 Annals Phys. 173 462Google Scholar

    [43]

    Sheng X L 2019 arXiv: 1912.01169

    [44]

    Sheng X L, Wang Q, Huang X G 2020 Phys. Rev. D 102 025019Google Scholar

    [45]

    Yang D L, Hattori K, Hidaka Y 2020 JHEP 07 070

    [46]

    Weickgenannt N, Speranza E, Sheng X L, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar

    [47]

    Sheng X L, Weickgenannt N, Speranza E, Rischke D H, Wa ng Q 2021 Phys. Rev. D 104 016029Google Scholar

    [48]

    Wang Z Y, Zhuang P F 2021 arXiv: 2105.00915

    [49]

    Fang S, Pu S, Yang D L 2022 Phys. Rev. D 106 016002Google Scholar

    [50]

    Gao J H, Liang Z T 2019 Phys. Rev. D 100 056021Google Scholar

    [51]

    Weickgenannt N, Sheng X L, Speranza E, Wang Q, Rischke D H 2019 Phys. Rev. D 100 056018Google Scholar

    [52]

    Hattori K, Hidaka Y, Yang D L 2019 Phys. Rev. D 100 096011Google Scholar

    [53]

    Wang Z, Guo X, Shi S, Zhuang P F 2019 Phys. Rev. D 100 014015Google Scholar

    [54]

    Liu Y C, Mameda K, Huang X G 2020 Chin. Phys. C 44 094101Google Scholar

    [55]

    Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Ann. Phys. 338 32Google Scholar

    [56]

    Romatschke P, Romatschke U 2019 Relativistic Fluid Dynamics In and Out of Equilibrium (Cambridge: Cambridge University Press)

    [57]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Rev. D 103 014030Google Scholar

    [58]

    Wang D L, Fang S, Pu S 2021 Phys. Rev. D 104 114043Google Scholar

    [59]

    Wang D L, Xie X Q, Fang S, Pu S 2022 Phys. Rev. D 105 114050Google Scholar

    [60]

    Gubser S S, Yarom A 2011 Nucl. Phys. B 846 469Google Scholar

    [61]

    Gubser S S 2010 Phys. Rev. D 82 085027Google Scholar

    [62]

    Montenegro D, Torrieri G 2019 Phys. Rev. D 100 056011Google Scholar

    [63]

    Montenegro D, Tinti L, Torrieri G 2017 Phys. Rev. D 96 056012AGoogle Scholar

    [64]

    Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar

    [65]

    Florkowski W, Kumar A, Ryblewski R 2019 Prog. Part. Nucl. Phys. 108 103709Google Scholar

    [66]

    Li S, Yee H U 2019 Phys. Rev. D 100 056022Google Scholar

    [67]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096Google Scholar

    [68]

    Montenegro D, Torrieri G 2020 Phys. Rev. D 102 036007Google Scholar

    [69]

    Li S, Stephanov M A, Yee H U 2021 Phys. Rev. Lett. 127 082302Google Scholar

    [70]

    Shi S, Gale C, Jeon S 2021 Phys. Rev. C 103 044906Google Scholar

    [71]

    She D, Huang A, Hou D F, Liao J F 2022 Sci. Bull. 67 2265Google Scholar

    [72]

    Hu J 2021 Phys. Rev. D 103 116015Google Scholar

    [73]

    Hu J 2022 Phys. Rev. D 105 076009Google Scholar

    [74]

    Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2022 JHEP 08 263

    [75]

    Singh R, Shokri M, Mehr S M A T 2022 arXiv: 2202.11504

    [76]

    Daher A, Das A, Florkowski W, Ryblewski R 2022 arXiv: 2202.12609

    [77]

    Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar

    [78]

    Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2022 Phys. Rev. Lett. 129 192301Google Scholar

    [79]

    Cao Z, Hattori K, Hongo M, Huang X G, Taya H 2022 PTEP 2022 071D

    [80]

    Liu Y C, Huang X G 2022 Sci. China Phys. Mech. Astron. 65 272011Google Scholar

  • [1] 寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强. 相对论重离子碰撞中的手征效应实验研究. 物理学报, 2023, 72(11): 112504. doi: 10.7498/aps.72.20230109
    [2] 盛欣力, 梁作堂, 王群. 重离子碰撞中的矢量介子自旋排列. 物理学报, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [3] 阮丽娟, 许长补, 杨驰. 夸克物质中的超子整体极化与矢量介子自旋排列. 物理学报, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [4] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论. 物理学报, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [5] 张善良, 邢宏喜, 王恩科. 相对论重离子碰撞中的喷注淬火效应. 物理学报, 2023, 72(20): 200304. doi: 10.7498/aps.72.20230993
    [6] 杨帅, 唐泽波, 杨驰, 查王妹. 相对论重离子碰撞中光子-光子相互作用的碰撞参数依赖性. 物理学报, 2023, 72(20): 201201. doi: 10.7498/aps.72.20230948
    [7] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂. 物理学报, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [8] 江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威. RHIC能区Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析. 物理学报, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [9] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [10] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测. 物理学报, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [11] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] 袁颖. 利用超相对论量子分子动力学模型研究交变梯度同步加速器能区Au+Au碰撞中的核阻止效应. 物理学报, 2013, 62(22): 222402. doi: 10.7498/aps.62.222402
    [13] 陈小凡. 相对论重离子碰撞中部分相干源的相干因子. 物理学报, 2012, 61(9): 092501. doi: 10.7498/aps.61.092501
    [14] 张民仓. 相对论性非球谐振子势场中的赝自旋对称性. 物理学报, 2009, 58(1): 61-65. doi: 10.7498/aps.58.61
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [17] 贺泽君, 蒋维渊, 朱志远, 刘 波. 夸克-胶子等离子体在相对论性核-核碰撞中形成的一种信号. 物理学报, 2000, 49(5): 911-914. doi: 10.7498/aps.49.911
    [18] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟. 物理学报, 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [20] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象. 物理学报, 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
计量
  • 文章访问数:  3860
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-08
  • 修回日期:  2023-01-30
  • 上网日期:  2023-02-17
  • 刊出日期:  2023-04-05

/

返回文章
返回