搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量

冯婕 郭强 舒鹏丽 温阳 温焕飞 马宗敏 李艳君 刘俊 伊戈尔·弗拉基米罗维奇·雅明斯基

引用本文:
Citation:

超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量

冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基

Measurement of distribution of charge adsorbed on Aux/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum

Feng Jie, Guo Qiang, Shu Peng-Li, Wen Yang, Wen Huan-Fei, Ma Zong-Min, Li Yan-Jun, Liu Jun, Igor Vladimirovich Yaminsky
PDF
HTML
导出引用
  • 原子尺度表面吸附Au原子的物理化学性质对研究纳米器件的制备以及表面催化等起着非常重要的作用. 利用调频开尔文探针力显微镜研究了室温下Au在Si(111)-(7×7)表面吸附的电荷分布的特性. 首先, 利用自制超高真空开尔文探针力显微镜成功得到了原子尺度Au在Si(111)-(7×7) 不同吸附位的表面形貌与局域接触电势差(LCPD); 其次, 通过原子间力谱与电势差分析了Au/Si(111)-(7×7) 特定原子位置的原子特性, 实现了原子识别; 并通过结合差分电荷密度计算解释了Au/Si(111)-(7×7)表面间电荷转移与Au的吸附特性. 结果显示, Au原子吸附有单原子和团簇形式. 其中, Au团簇以6个原子为一组呈六边形结构吸附于Si(111)-(7×7) 的层错半单胞内的3个中心原子位; 单个Au原子吸附于非层错半单胞的中心顶戴原子位; 同时通过电势差测量得知单个Au原子和Au团簇失去电子呈正电特性. 表面差分电荷密度结果显示金在吸附过程中发生电荷转移, 失去部分电荷, 使得吸附原子位置上的功函数局部减少. 在短程力、局域接触势能差和差分电荷密度发生变化的距离范围内, 获得了理论和实验之间的合理一致性.
    The physicochemical properties of Au atoms adsorbed on the surface on an atomic scale play a very important role in preparing nanodevices and surface catalysis. In this paper, we use frequency modulated Kelvin probe force microscopy (FM-KPFM)to study the multi-bit adsorbed charge distribution of Au on the surface of Si(111)-(7×7) at room temperature. Firstly, the surface topography and local contact potential difference (LCPD) of Au at different adsorption sites in Si(111)-(7×7) are successfully obtained by using home-made ultra-high vacuum Kelvin probe force microscopy. Secondly, we analyze the atomic characteristics of specific atomic positions of Au/Si(111)-(7×7) by force spectroscopy and potential difference, and realize the atomic identification . The adsorption characteristics of Au/Si(111)-(7×7) surface charge transfer and Au are explained by combining differential charge density calculations. The results show that Au atom adsorption mainly is in the form of single atom and cluster . Specifically, the Au cluster is adsorbed at the three central positions of Si(111)-(7×7) in a hexagonal structure of six atoms. Individual Au atoms are adsorbed to the positions of central adatoms of Si(111)-(7×7). At the same time, through the measurement of potential difference, it is known that a single Au atom and Au cluster lose electrons, presenting a positive electrical characteristic. The results of surface differential charge density show that Au undergoes charge transfer during adsorption, losing part of the charge, which locally reduces the work function at the position of the adsorbed atom. In the range of distances where short-range forces, local contact potential energy differences and differential charge densities change, the theoretical results and experimental results are in reasonable agreement.
      通信作者: 马宗敏, mzmncit@163.com ; 刘俊, liuj@nuc.edu.cn
    • 基金项目: 国家自然科学基金国际合作与交流项目(批准号: 62220106012)、国家自然科学基金(批准号: 51727808, 61874100, 51922009)、山西省杰出青年基金(批准号: 202103021221007)和山西省“1331”项目重点学科建设基金(批准号: 1331KSC)资助的课题.
      Corresponding author: Ma Zong-Min, mzmncit@163.com ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the International Cooperation and Exchange Project of National Natural Science Foundation of China (Grant No. 62220106012), the National Natural Science Foundation of China (Grant Nos. 51727808, 61874100, 51922009), the Shanxi Outstanding Youth Fund, China (Grant No. 202103021221007), and the Fund for Shanxi “1331” Project Key Subjects Construction (Grant No. 1331KSC).
    [1]

    Bocquet F, Nony L, Loppacher C, Glatzel T 2008 Phys. Rev. B 78 035410Google Scholar

    [2]

    Abraham D W, Williams C, Slinkman J, Wickramasinghe H K 1991 J. Vac. Sci. Technol. B 9 703Google Scholar

    [3]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [4]

    Wen H F, Li Y J, Arima E, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2017 Nanotechnology 28 105704Google Scholar

    [5]

    Wen H F, Miyazaki M, Zhang Q, Adachi Y, Li Y J, Sugawara Y 2018 Phys. Chem. Chem. Phys. 20 28331Google Scholar

    [6]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017 Appl. Surf. Sci. 394 472Google Scholar

    [7]

    Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar

    [8]

    Wu K, Fujikawa Y, Nagao T, Hasegawa Y, Nakayama K S, Xue Q K, Wang E G, Briere T, Kumar V, Kawazoe Y, Zhang S B, Sakurai T 2003 Phys. Rev. Lett. 91 126101Google Scholar

    [9]

    Hu L, Huang B, Liu F 2021 Phys. Rev. Lett. 126 176101Google Scholar

    [10]

    Arai T, Inamura R, Kura D, Tomitori M 2018 Phys. Rev. B 97 115428Google Scholar

    [11]

    Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502Google Scholar

    [12]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. A 30 061406Google Scholar

    [13]

    Qu B , Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [14]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [15]

    Li W, Ding W, Gong Y, Ju D 2021 Surface. Coatings 11 281Google Scholar

    [16]

    Baranov D S, Vlaic S, Baptista, J, Cofler E, Stolyarov V S, Roditchev D, Pons S 2022 Nano. Lett. 22 652Google Scholar

    [17]

    王慧云 冯婕 王旭东 温阳 魏久焱 温焕飞 石云波 马宗敏 李艳君 刘俊 2022 物理学报 71 060702Google Scholar

    Wang H Y, Feng J, Wang X D, Wen Y, Wei J Y, Wen H F, Shi Y B, Ma Z M, Li Y J, Liu Jun 2022 Acta Phys. Sin. 71 060702Google Scholar

    [18]

    周颖慧 2007 博士学位论文 (厦门: 厦门大学)

    Zhou Y H 2007 Ph. D. Dissertation(Xiamen: Xiamen University) (in Chinese)

    [19]

    魏久焱 马宗敏 温焕飞 2020 电子显微学报 39 122Google Scholar

    Wei J Y, Ma Z M, Wen H F 2020 J. Chin. Electron Microsc. Soc. 39 122Google Scholar

    [20]

    Yurtsever A, Sugimoto Y, Tanaka H, Abe M, Morita S, Ondrác M, Pou P, Pérez R, Jelínek P 2013 Phys. Rev. B 87 155403Google Scholar

    [21]

    Pou P, Ghasemi S A, Jelinek P, Lenosky T, Goedecker S, Perez R 2009 Nanotechnology 20 264015Google Scholar

    [22]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [23]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [24]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [25]

    Huang Z, Lin Y, Han C, Han C, Sun Y Y, Wu K, Chen E 2021 J. Phys. Chem. C 125 7944Google Scholar

    [26]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • 图 1  NC-AFM / FM-KPFM的实验原理图(浅灰色框是 NC-AFM 形貌部分, 深灰色框是 KPFM 部分)

    Fig. 1.  Schematic of NC-AFM/KPFM experiment (Light gray boxes are the NC-AFM topography part and the dark grey boxes are the KPFM part).

    图 2  Au/Si(111)-(7×7) 表面制备

    Fig. 2.  . Preparation of Au/Si(111)-(7×7) surface.

    图 3  AFM 形貌图 (a) Si(111)-(7×7)表面, 图像尺寸为4.5 nm×2.5 nm (f0 = 162 kHz, Q = 1638, Δf = –45 Hz, A = 7 nm); (b) Au原子吸附在Si(111)-(7×7) 表面, 图像尺寸为5.3 nm×5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –45 Hz, A = 7 nm); (c) Au 团簇吸附在Si(111)-(7×7) 表面, 图像尺寸为6.5 nm × 5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm)

    Fig. 3.  AFM images: (a) Si(111)-(7×7) surface, image size of 4.5 nm×2.5 nm (f0 = 162 kHz, Q = 1638, Δf = –45 Hz, A = 7 nm); (b) Au atoms adsorbed on Si(111)-(7×7) surface, image size of 5.3 nm×5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –45 Hz, A = 7 nm); (c) Au cluster adsorbed on Si(111)-(7×7) surface , image size of 6.5 nm×5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm)

    图 4  (a) Au/Si(111)-(7×7) 表面特定原子位置(图3(b))测量的短程力曲线, 箭头和绘图线的颜色代表相同; (b) Au团簇/Si(111)-(7×7) 表面特定原子位置(图3(c))测量的短程力曲线

    Fig. 4.  (a) Short range force curves measured over the atomic positions (Fig.3(b)) of Au/Si(111)-(7×7) surfces. The color code for arrows and plot lines is the same; (b) short range force curves measured over the atomic positions (Fig.3(c)) of Au cluster/Si(111)-(7×7) surfaces.

    图 5  在不同针尖-样品表面距离下测得的探针本征频率频移与样品所加偏压关系曲线. 偏压值为0 V该处原子为中性金原子Au0; 偏压值为–0.2 V该处原子为带正电金原子Au+(以Δf = –4 Hz测量为起始点, 标记为Z = 0)

    Fig. 5.  Bias-spectroscopy curves measured at several tip surface separations to extract the bias voltage that minimizes the tip-surface electrostatic interaction. The bias value is 0 V, the atom is the neutral Au atom(Au0); bias value is –0.2 V, where the atom is a positively charged Au atom (Au+) (Starting point with Δf = –4 Hz measurement, marked as Z= 0)

    图 6  单个Au原子吸附在Si(111)-(7×7) 表面的 (a) 形貌图和 (b) VLCPD 图, 图像尺寸为6.5 nm×5 nm (f0 =151 kHz, Q = 15011, Δf = –66.2 Hz, A = 7 nm, $ {V}_{{\rm{a}}{\rm{c}}} $ = 500 mV, $ {f}_{{\rm{a}}{\rm{c}}} $ = 500 Hz); (c) 形貌和 (d) VLCPD图的剖线图

    Fig. 6.  (a) Topography and (b) VLCPD image of Au atoms absorbed on Si(111)-(7×7) surface, image size: 6.5 nm×5 nm (f0 = 151 kHz, Q = 15011, Δf = –66.2 Hz, A = 7 nm, $ {V}_{{\rm{a}}{\rm{c}}} $ = 500 mV, $ {f}_{{\rm{a}}{\rm{c}}} $ = 500 Hz); (c) topography and (d) line profiles of VLCPD

    图 7  Au 团簇在Si (111)-(7×7) 表面的 (a) 形貌图和(b) VLCPD 图, 图像尺寸为 4.8 nm×2.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm, ${V}_{\rm ac}$ = 500 mV, ${f}_{{\rm{ac}}}$ = 500 Hz); (c) 形貌和 (d) VLCPD图的剖线图(图7选取自图3(a)中的部分图像, 图7中的蓝色线标注在图3(a)中, 紫色虚线圆圈为侧视图中的Au原子, 并不是截线位置上的Au原子)

    Fig. 7.  (a) Topography and (b) VLCPD image of Au cluster absorbed on Si (111)-(7×7) surface, image size of 4.8 nm×2.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm, $ {V}_{{\rm{a}}{\rm{c}}} $ = 500 mV, $ {f}_{{\rm{a}}{\rm{c}}} $ = 500 Hz); (c) topography and (d) line profiles of VLCPD. (Fig.7 is selected from some of the images in Fig. 3(a), and the blue line in Fig.7 is denoted in Fig. 3(a), the purple dotted circle is the Au atom in the side view, not the Au atom in the truncated position).

    图 8  (a) Si (111)-(7×7)表面的单个Au原子模型, (b) Si (111)-(7×7)表面的Au团簇模型(灰色和蓝色球是表面的亚表面Si原子和Si顶戴原子, 绿色球是剩余原子, 紫色球是Au原子); (c) Au原子和(d) Au团簇吸附位置在对应AFM图上的示意图

    Fig. 8.  (a) Model of Au atoms absorbed on Si (111)-(7×7) surface, (b) model of Au cluster absorbed on Si (111)-(7×7) surface (the gray and blue balls are subsurface Si atoms and Si adatoms on the surface, the green balls are rest atoms, the pink balls are Au atoms); Schematic of adsorption position on the corresponding AFM images of (c) Au atoms and (d) Au cluster.

    图 9  (a) 吸附在Si(111)-(7×7)表面高配位上的Au原子差分电荷密度分布; (b)吸附在Si (111)-(7×7)表面Au团簇的差分电荷密度分布

    Fig. 9.  (a) Differential charge density distribution of Au atom adsorbed on the high coordination of Si (111)-(7×7) surface; (b) differential charge density distribution of Au cluster adsorbed on Si (111)-(7×7) surface.

  • [1]

    Bocquet F, Nony L, Loppacher C, Glatzel T 2008 Phys. Rev. B 78 035410Google Scholar

    [2]

    Abraham D W, Williams C, Slinkman J, Wickramasinghe H K 1991 J. Vac. Sci. Technol. B 9 703Google Scholar

    [3]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [4]

    Wen H F, Li Y J, Arima E, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2017 Nanotechnology 28 105704Google Scholar

    [5]

    Wen H F, Miyazaki M, Zhang Q, Adachi Y, Li Y J, Sugawara Y 2018 Phys. Chem. Chem. Phys. 20 28331Google Scholar

    [6]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017 Appl. Surf. Sci. 394 472Google Scholar

    [7]

    Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar

    [8]

    Wu K, Fujikawa Y, Nagao T, Hasegawa Y, Nakayama K S, Xue Q K, Wang E G, Briere T, Kumar V, Kawazoe Y, Zhang S B, Sakurai T 2003 Phys. Rev. Lett. 91 126101Google Scholar

    [9]

    Hu L, Huang B, Liu F 2021 Phys. Rev. Lett. 126 176101Google Scholar

    [10]

    Arai T, Inamura R, Kura D, Tomitori M 2018 Phys. Rev. B 97 115428Google Scholar

    [11]

    Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502Google Scholar

    [12]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. A 30 061406Google Scholar

    [13]

    Qu B , Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [14]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [15]

    Li W, Ding W, Gong Y, Ju D 2021 Surface. Coatings 11 281Google Scholar

    [16]

    Baranov D S, Vlaic S, Baptista, J, Cofler E, Stolyarov V S, Roditchev D, Pons S 2022 Nano. Lett. 22 652Google Scholar

    [17]

    王慧云 冯婕 王旭东 温阳 魏久焱 温焕飞 石云波 马宗敏 李艳君 刘俊 2022 物理学报 71 060702Google Scholar

    Wang H Y, Feng J, Wang X D, Wen Y, Wei J Y, Wen H F, Shi Y B, Ma Z M, Li Y J, Liu Jun 2022 Acta Phys. Sin. 71 060702Google Scholar

    [18]

    周颖慧 2007 博士学位论文 (厦门: 厦门大学)

    Zhou Y H 2007 Ph. D. Dissertation(Xiamen: Xiamen University) (in Chinese)

    [19]

    魏久焱 马宗敏 温焕飞 2020 电子显微学报 39 122Google Scholar

    Wei J Y, Ma Z M, Wen H F 2020 J. Chin. Electron Microsc. Soc. 39 122Google Scholar

    [20]

    Yurtsever A, Sugimoto Y, Tanaka H, Abe M, Morita S, Ondrác M, Pou P, Pérez R, Jelínek P 2013 Phys. Rev. B 87 155403Google Scholar

    [21]

    Pou P, Ghasemi S A, Jelinek P, Lenosky T, Goedecker S, Perez R 2009 Nanotechnology 20 264015Google Scholar

    [22]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [23]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [24]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [25]

    Huang Z, Lin Y, Han C, Han C, Sun Y Y, Wu K, Chen E 2021 J. Phys. Chem. C 125 7944Google Scholar

    [26]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • [1] 高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英. 限域结构热致变色相变环氧复合绝缘陷阱特性的机理. 物理学报, 2025, 74(1): 017701. doi: 10.7498/aps.74.20241447
    [2] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制. 物理学报, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [3] 王慧云, 冯婕, 王旭东, 温阳, 魏久焱, 温焕飞, 石云波, 马宗敏, 李艳君, 刘俊. 室温超高真空环境原子尺度Au/Si(111)-(7×7)不定域吸附的局域接触势能差测量技术. 物理学报, 2022, 71(6): 060702. doi: 10.7498/aps.71.20211853
    [4] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [5] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [6] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [7] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究. 物理学报, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [8] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [9] 赵明海, 孙静静, 王丹, 邹志强, 梁齐. C60分子在Si(111)-7×7表面分子束外延生长的STM研究. 物理学报, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [10] 郝立超, 段俊丽. 表面电荷与体陷阱对GaN基HEMT器件热电子和量子效应的影响研究. 物理学报, 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [11] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [12] 闫隆, 张永平, 彭毅萍, 庞世谨, 高鸿钧. 在Si(111)-(7×7)表面自组织生长二维Ge团簇超晶格. 物理学报, 2002, 51(5): 1017-1021. doi: 10.7498/aps.51.1017
    [13] 张永平, 闫隆, 解思深, 庞世谨, 高鸿钧. Si(111)-(7×7)表面上Ge量子点的自组织生长. 物理学报, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [14] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [15] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [16] 闫隆, 张永平, 彭毅萍, 庞世谨, 高鸿钧. Ge在Si(111)7×7表面的选择性吸附. 物理学报, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [17] 李群祥, 杨金龙, 丁长庚, 汪克林, 李家明. STM针尖和外电场在Si(111)-7×7表面单原子操纵中的作用. 物理学报, 1999, 48(6): 1086-1094. doi: 10.7498/aps.48.1086
    [18] 蓝田, 徐飞岳. 用低能电子衍射研究Si(111)7×7表面的原子结构. 物理学报, 1989, 38(7): 1077-1085. doi: 10.7498/aps.38.1077
    [19] 朱福荣, 罗艳生, 戴道宣. 低温下水汽在Si(111)7×7表面上的化学吸附. 物理学报, 1989, 38(2): 296-300. doi: 10.7498/aps.38.296
    [20] 王向东, 胡际璜, 戴道宣. Si(111)7×7清洁表面的总电流谱. 物理学报, 1988, 37(11): 1888-1892. doi: 10.7498/aps.37.1888
计量
  • 文章访问数:  3830
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-03-06
  • 上网日期:  2023-03-28
  • 刊出日期:  2023-06-05

/

返回文章
返回