搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuSe表面修饰的第一性原理研究

莫秋燕 张颂 荆涛 张泓筠 李先绪 吴家隐

引用本文:
Citation:

CuSe表面修饰的第一性原理研究

莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐

First-principles study of surface modification of CuSe

Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin
PDF
HTML
导出引用
  • 单层CuSe属于体相为非层状的二维材料, 本质上具有金属性质, 因此不适合在电子器件中应用. 本文通过外部原子修饰的方法实现CuSe电子结构的改变, 采用密度泛函理论的第一性原理研究了单层CuSe在顶位、中心和桥位添加第二周期原子后的能带结构, 重点分析了单层CuSe添加Li和B原子的电子结构, 包括能带结构、态密度、差分电荷密度和晶体轨道哈密顿布居分析. 添加Li原子后, 从能带结构的结果来看, 三个位置都能实现CuSe由金属性转为半导体性, 且Li原子更倾向修饰在CuSe的六角形中心, 带隙约为1.77 eV; 在Cu原子的顶部位置添加B原子也可以实现CuSe具有半导体性, 带隙约为1.2 eV. 通过差分电荷密度和晶体轨道哈密顿布居的结果来看, B原子用B-Se极性共价键结合在单层CuSe的顶部. 第一原理揭示了从单层CuSe到CuXSe (X = Li, B)的金属到半导体转变的实现, 计算结果使CuSe在未来的电子设备中使用成为可能.
    Original bulk phases of two-dimensional atomic crystal materials are layered. However, a few relevant researches show that some of two-dimensional material crystals have non-layered bulk phases. In this work we investigate monolayer CuSe which is non-layered, belonging in a new kind of honeycomb graphene analogue. Monolayer CuSe is not suitable for application in electronic devices because of its metallic nature. In order to find new two-dimensional atomic crystal materials with excellent performance suitable for application in electronic devices, we change CuSe from metal to semiconductor through external atom modification. The first principles study of density functional theory is conducted to ascertain the energy band structure of monolayer CuSe after second periodic atoms have been added to the top, center and bridge sites. The characteristics of monolayer CuSe with addition of Li or B atoms are studied, including energy band structure, the density of states, differential charge density, and crystal orbital Hamiltonian population. The results show that after adding Li atoms to CuSe, the CuSe transforms from metallic to semiconductive property at all three positions, and Li atom is more easily to be modified in the hexagonal center of CuSe, with band gap being about 1.77 eV, the Fermi level biased towards the top of the valence band. The CuSe with addition of Li atoms exhibits a p-type semiconductor property, so it is a direct bandgap semiconductor. Adding B atom to the top of Cu atom can also make CuSe semiconductive, with a band gap of about 1.2 eV, the conduction band minimum at the K point, and the valence band maximum at the Γ point. The CuSe with addition of B atoms belongs in an indirect band gap semiconductor, and the Fermi energy level is biased towards the conduction band minimum, exhibiting the characteristics of an n-type semiconductor. According to the results of differential charge density and crystal orbital Hamiltonian population, the B atom is bound to the top of the monolayer CuSe with the B-Se polar covalent bond. The first principle study reveals the realization of metal-to-semiconductor transition from monolayer CuSe to CuXSe (X = Li, B), and the calculation results also show that CuSe with addition of Li atoms or B atoms is likely to be used in future electronic devices.
      通信作者: 李先绪, lixianx@chinatelecom.cn ; 吴家隐, jiayinwu@foxmail.com
    • 基金项目: 凯里学院校级规划课题(批准号: 2022ZD05)和黔东南州科技计划(批准号: [2022]08)资助的课题.
      Corresponding author: Li Xian-Xu, lixianx@chinatelecom.cn ; Wu Jia-Yin, jiayinwu@foxmail.com
    • Funds: Project supported by School-level Planning Project of KaiLi School, China (Grant No. 2022ZD05) and the Qiandongnan Prefecture Science and Technology Plan Project, China (Grant No. [2022]08).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhao J J, Liu H S, Yu Z M, Quhe R, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24Google Scholar

    [3]

    Lang J L, Ding B, Zhang S, Su H X, Ge B H, Qi L H, Gao H J, Li X Y, Li Q Y, Wu H 2017 Adv. Mater. 29 1701777Google Scholar

    [4]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [5]

    Liao Y L, Chen Z F, Connell J W, Fay C C, Park C, Kim J W, Lin Y 2014 Adv. Funct. Mater. 24 4497Google Scholar

    [6]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y, Golberg D 2010 Nano Lett. 10 5049Google Scholar

    [7]

    Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, Pino A P, Moshkalev S A, Matsuda A 2019 Nano Res. 12 2655Google Scholar

    [8]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Chhowalla M, Liu Z F, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar

    [11]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [12]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 Acs Nano 6 1322Google Scholar

    [13]

    Zhan X X, Si C, Zhou J, Sun Z M 2020 Nano. Horiz. 5 235Google Scholar

    [14]

    Aydın Z Y, Abacı S 2017 Solid State Sci. 74 74Google Scholar

    [15]

    Buffiere M, Dhawale D S, EI-Mellouhi F 2019 Energy Technol. 7 1900819Google Scholar

    [16]

    Yang Z Q, Wang S C, Li H L, Yang J P, Zhao J X, Qu W Q, Shih K 2020 Ind. End. Chem. Res. 59 13603Google Scholar

    [17]

    Masrat S, Poolla R, Dipak P, Zaman M B 2021 Surf. Interfaces 23 100973Google Scholar

    [18]

    Cheng Y S, Zhang J, Xiong X S, Chen C, Zeng J H, Kong Z, Wang H B, Xi J H, Yuan Y J, Ji Z G 2021 J. Alloy. Compd. 870 159540Google Scholar

    [19]

    Weng J H, Gao S P 2019 Rsc. Adv. 9 32984Google Scholar

    [20]

    Weng J H, Gao S P 2021 J. Phys. Chem. Solids 148 109738Google Scholar

    [21]

    Yang G, Xu W X, Gao S P 2021 Comput. Mater. Sci. 198 110696Google Scholar

    [22]

    Ruffieux P, Wang S Y, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Mullen K, Fasel R 2016 Nature 531 489Google Scholar

    [23]

    Nakanishi T, Ando T 2015 Phys. Rev. B 91 155420Google Scholar

    [24]

    Chamlagain B, Withanage S S, Johnston A C, Khondaker S I 2020 Sci. Rep. 10 12970Google Scholar

    [25]

    Cao T, Li Z L, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [26]

    Kang M G, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A, Kim K S 2017 Nano Lett. 17 1610Google Scholar

    [27]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [28]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotech. 10 534Google Scholar

    [29]

    Ju L, Shi Z W, Nair N, Lü Y C, Jin C H, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650Google Scholar

    [30]

    Lebegue S, Klintenberg M, Eriksson O, Katsnelson M I 2009 Phys. Rev. B 79 245117Google Scholar

    [31]

    Yang J H, Song S R, Du S X, Gao H J, Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594Google Scholar

    [32]

    Wang Q C, Lei Y P, Wang Y C, Liu Y, Song C Y, Zeng J, Song Y H, Duan X D, Wang D S, Li Y D 2020 Energy Environ. Sci. 13 1593Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phy. Rev. Lett. 77 3865Google Scholar

    [35]

    Wu X J, Huang X, Liu J Q, Li H, Yang J, Li B, Huang W, Zhang H 2014 Angew. Chem. 126 5183Google Scholar

  • 图 1  CuBSe不同位置的晶体结构俯视图 (a) B在Cu的顶位; (b) B在Se的顶位; (c) B在中心位置; (d) B在桥位

    Fig. 1.  Top view of crystal structure at different positions of CuBSe: (a) B is at the top of Cu; (b) B is at the top of Se; (c) B in the center; (d) B at bridge site.

    图 2  单层CuSe的电子结构 (a) 单层CuSe的能带结构; (b) 单层CuSe的态密度

    Fig. 2.  Electronic structure of monolayer CuSe: (a) Energy band structure of monolayer CuSe; (b) density of states of monolayer CuSe.

    图 3  CuXSe (X = Li, Be, B, C, N, O, F)的能带结构 (a)—(c), (d)—(f), (g)—(i), (j)—(l), (m)—(o), (p)—(r), (s)—(u) 依次表示Li, Be, B, C, N, O, F原子分别在CuSe的顶部位置、中心位置和桥位

    Fig. 3.  Energy band structure of CuXSe (X = Li, Be, B, C, N, O, F): (a)–(c), (d)–(f), (g)–(i), (j)–(l), (m)–(o), (p)–(r), (s)–(u) Indicate the top position, center position, and bridge position of Li, Be, B, C, N, O and F atoms in CuSe in sequence.

    图 4  CuLiSe (Li在CuSe的顶部) (a) 态密度图; (b) Fermi能级附近放大图

    Fig. 4.  CuLiSe (Li at the top of CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 5  CuLiSe (Li在CuSe的桥位) (a) 态密度图; (b) Fermi能级附近放大图

    Fig. 5.  CuLiSe (Li bridge site in CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 6  CuLiSe (Li在CuSe的中心) (a) 态密度图; (b) Fermi能级附近放大图

    Fig. 6.  CuLiSe (Li is in the center of CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 7  CuBSe (B在CuSe的顶部) (a) 态密度图; (b) Fermi能级附近放大图

    Fig. 7.  CuBSe (B at the top of CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 8  差分电荷密度图及对应的结构图 (a) CuSe; (b)—(d) CuLiSe (Li分别在CuSe的顶部位置、中心位置和桥位); (e) CuBSe (B在CuSe的顶部位置)

    Fig. 8.  Differential charge density diagram and corresponding crystal structure: (a) CuSe; (b)−(d) CuLiSe (Li at the top, center and brdige position of CuSe); (e) CuBSe (B at the top of CuSe).

    图 9  CuLiSe (Li在CuSe的中心)的COHP图 (a) Se-Cu; (b) Li-Se; (c) Li-Cu

    Fig. 9.  COHP diagram of CuLiSe (Li in the center of CuSe): (a) Se-Cu; (b) Li-Se; (c) Li-Cu.

    图 10  CuBSe (B在CuSe的顶部)的COHP图 (a) B-Se; (b) B-Cu; (c) Se-Cu

    Fig. 10.  COHP diagram of CuBSe (B at the top of CuSe): (a) B-Se; (b) B-Cu; (c) Se-Cu.

    表 1  CuXSe (X = Li, Be, B, C, N, O, F)体系不同位置的形成能

    Table 1.  Formation energy at different positions of CuXSe (X = Li, Be, B, C, N, O, F)system.

    掺杂体系不同位置的形成能$ {E}_{{\rm{f}}} $/eV
    Cu原子的顶位Se原子的顶位中心位置桥位最稳定的位置
    CuLiSe–2.016–1.747–2.622–2.257中心位置
    CuBeSe–2.456–1.979–2.091–2.520桥位
    CuBSe–3.509–3.723–2.484–2.121Se原子的顶位
    CuCSe–4.291–4.212–2.619–2.452Cu原子的顶位
    CuNSe–0.860–1.647–1.044–1.532Se原子的顶位
    CuOSe–3.271–2.977–1.704–2.177Cu原子的顶位
    CuFSe–2.537–2.737–1.398–2.087Se原子的顶位
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhao J J, Liu H S, Yu Z M, Quhe R, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24Google Scholar

    [3]

    Lang J L, Ding B, Zhang S, Su H X, Ge B H, Qi L H, Gao H J, Li X Y, Li Q Y, Wu H 2017 Adv. Mater. 29 1701777Google Scholar

    [4]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [5]

    Liao Y L, Chen Z F, Connell J W, Fay C C, Park C, Kim J W, Lin Y 2014 Adv. Funct. Mater. 24 4497Google Scholar

    [6]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y, Golberg D 2010 Nano Lett. 10 5049Google Scholar

    [7]

    Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, Pino A P, Moshkalev S A, Matsuda A 2019 Nano Res. 12 2655Google Scholar

    [8]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Chhowalla M, Liu Z F, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar

    [11]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [12]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 Acs Nano 6 1322Google Scholar

    [13]

    Zhan X X, Si C, Zhou J, Sun Z M 2020 Nano. Horiz. 5 235Google Scholar

    [14]

    Aydın Z Y, Abacı S 2017 Solid State Sci. 74 74Google Scholar

    [15]

    Buffiere M, Dhawale D S, EI-Mellouhi F 2019 Energy Technol. 7 1900819Google Scholar

    [16]

    Yang Z Q, Wang S C, Li H L, Yang J P, Zhao J X, Qu W Q, Shih K 2020 Ind. End. Chem. Res. 59 13603Google Scholar

    [17]

    Masrat S, Poolla R, Dipak P, Zaman M B 2021 Surf. Interfaces 23 100973Google Scholar

    [18]

    Cheng Y S, Zhang J, Xiong X S, Chen C, Zeng J H, Kong Z, Wang H B, Xi J H, Yuan Y J, Ji Z G 2021 J. Alloy. Compd. 870 159540Google Scholar

    [19]

    Weng J H, Gao S P 2019 Rsc. Adv. 9 32984Google Scholar

    [20]

    Weng J H, Gao S P 2021 J. Phys. Chem. Solids 148 109738Google Scholar

    [21]

    Yang G, Xu W X, Gao S P 2021 Comput. Mater. Sci. 198 110696Google Scholar

    [22]

    Ruffieux P, Wang S Y, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Mullen K, Fasel R 2016 Nature 531 489Google Scholar

    [23]

    Nakanishi T, Ando T 2015 Phys. Rev. B 91 155420Google Scholar

    [24]

    Chamlagain B, Withanage S S, Johnston A C, Khondaker S I 2020 Sci. Rep. 10 12970Google Scholar

    [25]

    Cao T, Li Z L, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [26]

    Kang M G, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A, Kim K S 2017 Nano Lett. 17 1610Google Scholar

    [27]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [28]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotech. 10 534Google Scholar

    [29]

    Ju L, Shi Z W, Nair N, Lü Y C, Jin C H, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650Google Scholar

    [30]

    Lebegue S, Klintenberg M, Eriksson O, Katsnelson M I 2009 Phys. Rev. B 79 245117Google Scholar

    [31]

    Yang J H, Song S R, Du S X, Gao H J, Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594Google Scholar

    [32]

    Wang Q C, Lei Y P, Wang Y C, Liu Y, Song C Y, Zeng J, Song Y H, Duan X D, Wang D S, Li Y D 2020 Energy Environ. Sci. 13 1593Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phy. Rev. Lett. 77 3865Google Scholar

    [35]

    Wu X J, Huang X, Liu J Q, Li H, Yang J, Li B, Huang W, Zhang H 2014 Angew. Chem. 126 5183Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [8] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [13] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [16] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [17] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [18] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  4048
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 修回日期:  2023-04-09
  • 上网日期:  2023-04-14
  • 刊出日期:  2023-06-20

/

返回文章
返回