搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向同性等离子体覆盖金属天线辐射增强现象

李文秋 唐彦娜 刘雅琳 马维聪 王刚

引用本文:
Citation:

各向同性等离子体覆盖金属天线辐射增强现象

李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚

Radiation enhancement phenomenon of isotropic plasma layer coated cylinderical metal antenna

Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Ma Wei-Cong, Wang Gang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 以飞行器再入大气层时面临的通信“黑障”问题为研究背景, 考虑粒子动力学效应, 采用温等离子体介电常数模型, 理论分析了各向同性等离子体覆盖圆柱金属天线构型中角向对称电磁模式的色散特性、传播特性及辐射特性. 研究结果表明: 在低气压、电磁波频率 ω/(2π) = 1 GHz 参量条件下, 界于金属天线表面和主等离子体层之间的鞘层厚度约为几个德拜长度; 角向对称模在天线表面的传播属于快波(波的相速大于光速)辐射, 且存在一个临界等离子体密度, 超过此临界值电磁波变为消逝波; 存在一个临界归一化鞘层厚度(ι/λDe)pha (或(ι/λDe)att), 超过此临界值时, 相位常数(或衰减常数)幅值开始陡升(或陡降), 即波的传播特性发生显著改变; 当金属天线半径为3倍等离子体趋肤深度、鞘层厚度为整个等离子体层厚度的0.1倍时, 电场和功率出现“椭圆形轮廓”辐射增强现象, 其可能是由等离子体频率共振和等离子体-鞘层-天线系统阻抗共振引起, 这些结论为相控阵天线的高分辨率成像等问题提供了理论思路.
    The blackout problem suffered by hypersonic vehicles as they re-enter the atmosphere is essential for effective communication of hypersonic vehicles. Aiming to solve this problem, in this paper, we proposed an antenna–sheath–plasma layer configuration, in which a thin plasma layer covered cylindrical metal antenna model is employed to investigate the radiation enhancement phenomenon by solving the dispersion equation of electromagnetic mode under optimized parameter conditions. Analytical results show that when the neutral gas pressure is low (p = 0.5 mTorr) and the antenna radius is triple the plasma skin depth, the thickness of the sheath between the surface of metal cylindrical antenna and plasma layer is about several Debye lengths, the azimuthally symmetric wave (m = 0 mode) that propagates along the antenna surface belongs to the fast wave (the phase velocity is greater than the light speed), there exists a critical plasma frequency ωpe (or plasma density n0), above which the propagating mode becomes evanescent wave; for the propagation characteristic, there exists a critical normalized sheath thickness (ι/λDe)pha (or (ι/λDe)att), above which the phase constant (or the attenuation constant) begins to increase (or decrease) sharply, which indicates a significant change in the propagation property of the propagating mode; most importantly, when the wave frequency ω/2π = 1 GHz, sheath thickness is one tenth of the whole plasma layer thickness, owing to the electron plasma frequency resonance and antenna-sheath-plasma resonance effect, the maximum radiation intensity of the symmetric wave exhibits an elliptical-like profile near ωpe/ω = 1 and ωpe/ω ≈ 1.33, respectively, while only a single-point radiation enhancement occurs at frequencies far from GHz range. These conclusions not only provide a method to solve or alleviate the blackout problem of GHz frequency communication faced by the hypersonic vehicles when they re-enter the atmosphere, but also have potential applications in high-resolution imaging induced by plasmonic micro-nano sized enhanced radiation and high-resolution phased array antennas.
      通信作者: 李文秋, beiste@163.com
    • 基金项目: 中国科学院空天信息创新研究院高功率微波源与技术重点实验室(批准号: Y9D0260H93) 资助的课题.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Power Microwave Sources and Technologies, Aerospace Information Research Institude, Chinese Academy of Sciences, China (Grant No. Y9D0260H93).
    [1]

    Kumar N, Vadera S R 2017 Aerospace Materials and Material Technologies (Singapore: Springer) p519

    [2]

    Ananth P B, Abhiram N, Krishna K H, et al. 2021 Mater. Today Proc. 47 4872Google Scholar

    [3]

    Ghayekhloo A, Abdolali A, Armaki S H M 2017 IEEE Trans. Antennas Propag. 65 3058Google Scholar

    [4]

    Dong B, Ma Y, Ren Z, et al. 2020 J. Phys. D: Appl. Phys. 53 213001Google Scholar

    [5]

    Koya A N, Cunha J, Guerrero-Becerra K A, Garoli D, Wang T, Juodkazis S, Zaccaria R P 2021 Adv. Funct. Mater. 31 2103706Google Scholar

    [6]

    李盼 2019 物理学报 68 146201Google Scholar

    Li P 2019 Acta Phys. Sin. 68 146201Google Scholar

    [7]

    陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 物理学报 64 077303Google Scholar

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 077303Google Scholar

    [8]

    Webb B A, Ziolkowski R W 2020 Photonics 7 88Google Scholar

    [9]

    Kim M, Boyd I D, Keidar M 2010 J. Spacecr. Rockets 47 29Google Scholar

    [10]

    Pinder D N 1965 Electron. Lett. 10 291Google Scholar

    [11]

    Messiaen A M, Vandenplas P E 1967 Electron. Lett. 1 26Google Scholar

    [12]

    Lin C C, Chen K M 1970 IEEE Trans. Antennas Propag. 18 831Google Scholar

    [13]

    Freeman E M, Lin C C, Chen K M 1971 Proc. Inst. Electr. Eng. 118 1748Google Scholar

    [14]

    Gao X T, Wang C S, Jiang B, Zhang Z L 2014 Phys. Plasmas 21 093301Google Scholar

    [15]

    Wang C S, Li X, Jiang B 2015 Appl. Phys. Lett. 106 102901Google Scholar

    [16]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [17]

    Virko V F, Kirichenko G S, Shamrai K P 2002 Plasma Sources Sci. Technol. 11 10Google Scholar

    [18]

    Niemi K, Krämer M 2008 Phys. Plasmas 15 073503Google Scholar

    [19]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar

    [20]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [21]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [22]

    Glaude V M M, Moisan M, Pantel R, Leprince P, Marec J 1980 J. Appl. Phys. 51 5693Google Scholar

    [23]

    Jackson J D 1999 Classical Electrodynamics (New York: John Wiley & Sons) p176

    [24]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [25]

    Stix T H 1992 Waves in Plasmas (New York: Springer Verlag) p72

    [26]

    Chen F F, Arnush D 2001 Phys. Plasmas 8 5051Google Scholar

  • 图 1  等离子体覆盖金属天线系统示意图

    Fig. 1.  A sketch of the plasma layer coated metal antenna system.

    图 2  等离子体频率为ωpe/(2π) = 10 GHz时, 天线半径对鞘层厚度与电子温度依赖关系的影响

    Fig. 2.  Impact of antenna radius on sheath thickness versus electron temperature relation for plasma frequency ωpe/(2π) = 10 GHz.

    图 3  ω/(2π) = 1 GHz, ${T_{\text{e}}} = 3{\text{ eV}}$, $p = 0.5{\text{ mTorr}}$, $a = $$ 3\max \{ {\delta _{{\text{pe}}}}\}$时, 相位常数和衰减常数与归一化等离子体频率的依赖关系

    Fig. 3.  Phase and attenuation constant versus electron temperature for wave frequency ω/(2π) = 1 GHz, ${T_{\text{e}}} = 3{\text{ eV}}$, $p = 0.5{\text{ mTorr}}$, $a = 3\max \{ {\delta _{{\text{pe}}}}\} $.

    图 4  等离子体频率为ωpe/(2π) = 3 GHz时, 天线半径对色散关系的影响

    Fig. 4.  Impact of antenna radius on dispersion relation for plasma frequency ωpe/(2π) = 3 GHz.

    图 5  $\omega /(2{\text{π }}) = 3{\text{ GHz}}$, ${\omega _{{\text{pe}}}} = 3\omega $, $p = 0.5{\text{ mTorr}}$, $a = 3{\delta _{{\text{pe}}}}$时, 电磁波在主等离子体区域的功率损耗随归一化相速的变化关系

    Fig. 5.  Power loss of electromagnetic waves in the main plasma region vs. the normalized phase velocity at $\omega /(2{\text{π }}) = $$ 3{\text{ GHz}}$, ${\omega _{{\text{pe}}}} = 3\omega $, $p = 0.5{\text{ mTorr}}$, $a = 3{\delta _{{\text{pe}}}}$.

    图 6  ωpe/(2π) = 3 GHz时, 天线半径对色散关系的影响 (a)相位常数; (b)衰减常数

    Fig. 6.  Impact of antenna radius on dispersion relation at ωpe/(2π) = 3 GHz: (a) Phase constant; (b) attenuation constant.

    图 7  ω/(2π) = 1 GHz时, 不同常数与归一化鞘层厚度的依赖关系 (a)相位常数; (b)衰减常数

    Fig. 7.  Dependence of different constant on normalized sheath thickness at ω/(2π) = 1 GHz: (a) Phase constant; (b) attenuation constant.

    图 8  总电场|E|在(${\omega _{\rm pe}}/\omega , {\text{ }}{T_{\text{e}}}$)参量空间的三维分布

    Fig. 8.  Three-dimensional electric field distribution in the parameter space of (${\omega _{\rm pe}}/\omega , ~{T_{\text{e}}}$).

    图 9  辐射功率Prad在(${\omega _{{\text{pe}}}}/\omega , {\text{ }}{T_{\text{e}}}$)参量空间的分布

    Fig. 9.  Radiation power of electromagnetic waves in the parameter space of (${\omega _{{\text{pe}}}}/\omega , ~{T_{\text{e}}}$).

  • [1]

    Kumar N, Vadera S R 2017 Aerospace Materials and Material Technologies (Singapore: Springer) p519

    [2]

    Ananth P B, Abhiram N, Krishna K H, et al. 2021 Mater. Today Proc. 47 4872Google Scholar

    [3]

    Ghayekhloo A, Abdolali A, Armaki S H M 2017 IEEE Trans. Antennas Propag. 65 3058Google Scholar

    [4]

    Dong B, Ma Y, Ren Z, et al. 2020 J. Phys. D: Appl. Phys. 53 213001Google Scholar

    [5]

    Koya A N, Cunha J, Guerrero-Becerra K A, Garoli D, Wang T, Juodkazis S, Zaccaria R P 2021 Adv. Funct. Mater. 31 2103706Google Scholar

    [6]

    李盼 2019 物理学报 68 146201Google Scholar

    Li P 2019 Acta Phys. Sin. 68 146201Google Scholar

    [7]

    陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 物理学报 64 077303Google Scholar

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 077303Google Scholar

    [8]

    Webb B A, Ziolkowski R W 2020 Photonics 7 88Google Scholar

    [9]

    Kim M, Boyd I D, Keidar M 2010 J. Spacecr. Rockets 47 29Google Scholar

    [10]

    Pinder D N 1965 Electron. Lett. 10 291Google Scholar

    [11]

    Messiaen A M, Vandenplas P E 1967 Electron. Lett. 1 26Google Scholar

    [12]

    Lin C C, Chen K M 1970 IEEE Trans. Antennas Propag. 18 831Google Scholar

    [13]

    Freeman E M, Lin C C, Chen K M 1971 Proc. Inst. Electr. Eng. 118 1748Google Scholar

    [14]

    Gao X T, Wang C S, Jiang B, Zhang Z L 2014 Phys. Plasmas 21 093301Google Scholar

    [15]

    Wang C S, Li X, Jiang B 2015 Appl. Phys. Lett. 106 102901Google Scholar

    [16]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [17]

    Virko V F, Kirichenko G S, Shamrai K P 2002 Plasma Sources Sci. Technol. 11 10Google Scholar

    [18]

    Niemi K, Krämer M 2008 Phys. Plasmas 15 073503Google Scholar

    [19]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar

    [20]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [21]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [22]

    Glaude V M M, Moisan M, Pantel R, Leprince P, Marec J 1980 J. Appl. Phys. 51 5693Google Scholar

    [23]

    Jackson J D 1999 Classical Electrodynamics (New York: John Wiley & Sons) p176

    [24]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [25]

    Stix T H 1992 Waves in Plasmas (New York: Springer Verlag) p72

    [26]

    Chen F F, Arnush D 2001 Phys. Plasmas 8 5051Google Scholar

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构. 物理学报, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [3] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [4] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析. 物理学报, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [5] 赵晓云, 刘金远, 段萍, 倪致祥. 不同成分等离子体鞘层的玻姆判据. 物理学报, 2011, 60(4): 045205. doi: 10.7498/aps.60.045205
    [6] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [7] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [8] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [9] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构. 物理学报, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [10] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [11] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [12] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [13] 黄永宪, 田修波, 杨士勤, Fu Ricky, Chu K. Paul. 脉冲偏压上升沿特性对等离子体浸没离子注入鞘层扩展动力学的影响. 物理学报, 2007, 56(8): 4762-4770. doi: 10.7498/aps.56.4762
    [14] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [15] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构. 物理学报, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [16] 谢鸿全, 刘濮鲲, 李承跃, 鄢 扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析. 物理学报, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [17] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据. 物理学报, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [18] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [20] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
计量
  • 文章访问数:  3287
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-05-11
  • 上网日期:  2023-05-12
  • 刊出日期:  2023-07-05

/

返回文章
返回