-
大尺寸压电超声换能器的耦合振动会导致其辐射面纵向位移振幅的平均值较小,振幅分布不均匀,严重影响系统的性能和可靠性。为了改善大尺寸超声振动系统性能,研究者们利用二维孔/槽型近周期声子晶体结构对横向振动进行抑制,但在对横向振动抑制的同时,结构的存在却会对换能器机械强度、工作带宽等性能参数造成不利的影响。针对这一问题,本文提出利用管柱型近周期声子晶体点缺陷结构对大尺寸夹心式纵振压电陶瓷换能器进行优化的新思路。该方法不仅可以利用构造的固/气二维近周期声子晶体结构的点缺陷模式,获得极低的能量损耗,有效提高系统辐射面的纵向位移振幅和振幅分布均匀度;也可以利用管柱结构中的双环形孔增强声波的多重散射,使得换能器在管柱柱高较低的条件下也能产生禁带,有效抑制横向振动的同时,大幅拓宽换能器系统的工作带宽,增强系统的稳定性和机械强度,降低加工成本。仿真结果证明了优化的有效性。
-
关键词:
- 横向振动 /
- 大尺寸压电超声换能器的性能 /
- 管柱型近周期声子晶体点缺陷结构
The coupling vibration of large-scale piezoelectric ultrasonic transducer will cause the average value of the longitudinal displacement amplitude of its radiation surface to be small, and the amplitude distribution is uneven, which seriously affects the performance and reliability of the system. In order to improve the performance of large-scale ultrasonic vibration system, researchers use two-dimensional hole/slot near-periodic phononic crystal structure to suppress the transverse vibration, but the structure will also affect the mechanical strength of the transducer while achieving the suppression of the transverse vibration The working bandwidth and other performance parameters have adverse effects. Based on this, a new idea of optimizing the large-scale sandwich longitudinal vibration piezoelectric ceramic transducer using the tubular near-periodic phononic crystal point defect structure is proposed. This method can not only use the point defect mode of the constructed solid/gas two-dimensional near-periodic phononic crystal structure to obtain extremely low energy loss, Effectively improve the longitudinal displacement amplitude and amplitude distribution uniformity of the radiation surface of the system; The double annular holes in the pipe string structure can also be used to enhance the multiple scattering of sound waves, so that the transducer can also produce a band gap under the low conditions of the pipe string, effectively suppress the transverse vibration, at the same time, significantly broaden the working bandwidth of the transducer system, enhance the stability and mechanical strength of the system, and reduce the processing cost. Simulation results and experimental processing test results also prove the effectiveness of the optimization.
In order to find the best parameters for the performance of the large-scale longitudinal vibration piezoelectric ultrasonic transducer, the paper uses the finite element analysis software to study the influence of the inner radius r1 of the pipe string, the width r of the pipe string ring, the radius R of the outermost air cylinder hole, and the height h2 of the pipe string on the longitudinal resonance frequency of the transducer performance, the longitudinal displacement amplitude distribution uniformity of the radiation surface, and the average longitudinal displacement amplitude. The research finally found the range of parameters that can make the performance of the transducer reach a relatively ideal state. The simulation results show that the tubular near-periodic phononic crystal point defect structure can improve the performance of large-scale longitudinal vibration piezoelectric ultrasonic transducer.-
Keywords:
- Transverse vibration /
- performance of large-scale piezoelectric ultrasonic transducer /
- tubular near-periodic phononic crystal point defect structure
-
[1] Liu X H, Huang D M, Wang X J, Zhang C H, Zhu H J, Jiang Z M, Wang X 1997 Acta Phys. Sin. 09 200(in Chinese)[刘晓晗, 黄大鸣, 王兴军, 张春红, 朱海军, 蒋最敏, 王迅1997物理学报09 200]
[2] Sigalas M M, Economou E N 1992 Jour. Sou. & Vib. 158 377
[3] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[4] Adibi A, Lee R K 2002 Elec. Lett. 36 1376
[5] Wang Y F, Wang Y S 2013 Jour. Vib. Acous. Tran. ASME 135 041009-1
[6] Das S, Dwivedi K, Rajasekharan S G and Rao Y 2021 Jour. Vib. Con.:JVC 27 827
[7] Yang S, Yu W D, Pan N 2011 Phys. B. Cond. Matt. 406 963
[8] Hsu J C, Wu T T 2006 Phys. Rev.B Cond.Matt. 74 2952
[9] Khelif A, Aoubiza B, Mohammadi S, Adibi A and Laude V 2006 Phys. Rev. E. Sta. non. sof. matt. Phys. 74 6610-1
[10] Benchabane S, Gaiffe O, Salut R, Ulliac G, Laude V and Kokkonen K 2015 Appl. Phys. Lett. 106 081903
[11] Ma T X, Fan Q S, Zhang C and Wang Y S 2021 Jour. Appl. Phys. 129 145
[12] Wu F, Hou Z, Liu Z and Liu Y 2001 Phys. Lett. A 292 198
[13] Miyashita, Toyokatsu 2014 Japan. Jour. Appl. Phys. 45 4440
[14] Li F, Liu J, Wu Y H 2011 Jour. Appl. Phys. 109 124907-1
[15] Li Y G, Chen T N, Wang X, Ma T and Ping J 2014 Jour. Appl. Phys. 116 0249041-1
[16] Lin S 2009 IEEE Trans. Ultra. Ferr. Freq. Con. 56 1990
[17] Lin S 1995 Appl. Acous. 44 249
[18] Ren S C 1983 Acta Acus. 1 152
[19] Rani M R, Prakasan K and Rudramoorthy R 2014 Inter. Jour. Desi. Eng. 5 344
[20] Adachi K, Ueha S 1990 The Jour. the Acous. Soc. Amer. 87 208
[21] Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173(in Chinese)[王莎, 林书玉2019物理学报68 173]
[22] Wang S, Lin S 2019 Ultra. 99 105954.
[23] Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 280(in Chinese)[赵甜甜, 林书玉2018物理学报67 280]
[24] Zhao T T, Lin S Y 2019 Acta acus. Uni. acus. 105 953
[25] Wang S, Lin S Y, Duan Y 2018 Appl. Acous. 37 811(in Chinese)[王莎, 林书玉, 段祎林2018应用声学37 811]
[26] Hu L Q, Wang S, Lin S Y 2022 Chin. Phys. B 31 508
[27] Lin J Y, Lin S Y 2022 Jour..Shaanxi Norm. Uni. (Natural Science Edition) 50 117(in Chinese)[林基艳, 林书玉2022陕西师范大学学报(自然科学版) 50 117]
[28] Hu L Q, Lin S Y 2021 Appl. Acous. 40 323(in Chinese)[胡理情, 林书玉2021应用声学40 323]
[29] Lin J Y, Lin S Y 2020 Crys. 10 1
[30] Lin J Y, Lin S Y, Wang S, Li Y 2021 SCIENTIA SINICA Phys. Mech. &Astro.51 100(in Chinese)[林基艳, 林书玉, 王升, 李耀2021中国科学:物理学力学天文学51 100]
[31] Wei Q, Cheng Y, Liu X J. 2011 Acta Phys. Sin. 60 311(in Chinese)[魏琦, 程营, 刘晓峻2011物理学报60 311]
[32] Mohammadi S, Eftekhar A.A, Khelif A, Hunt W D and Adibi A 2008 Appl. Phys. Lett. 92 221905-1
[33] Wu T T, Huang Z G, Tsai T C, Wu T C 2008 Appl. Phys. Lett. 93 111902-1
[34] Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur J O and Hladky-Hennion A C 2008 Phys.revi. B. Cond. Matt. Mat. Phys. 78 104105-1
[35] Pourabolghasem R, Khelif A, Mohammadi S, Eftekhar A A and Adibi A A 2014 Jour. Appl. Phys. 116 013514-1
[36] Benchabane, Sarah, Gaiffe, Olivier, Salut, Roland, Ulliac, Gwenn, Laude, Vincent, Kokkonen and Kimmo 2011 Phy.rev. B. Cond. Matt. Mat. Phys. 84 165136:1
[37] Shu F F 2016 Ph. D. Dissertation (Changchun:Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences) (in Chinese)[舒风风2016博士学位论文(长春:中国科学院长春光学精密机械与物理研究所)]
计量
- 文章访问数: 92
- PDF下载量: 4
- 被引次数: 0