搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本振光功率锁定方法应用于激光外差辐射计的研究

李月 李竣 薛正跃 王晶晶 王贵师 高晓明 谈图

引用本文:
Citation:

本振光功率锁定方法应用于激光外差辐射计的研究

李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图

Research on application of local oscillator power locking method to laser heterodyne radiometer

Li Yue, Li Jun, Xue Zheng-Yue, Wang Jing-Jing, Wang Gui-Shi, Gao Xiao-Ming, Tan Tu
PDF
HTML
导出引用
  • 激光外差辐射计具备成本低、体积小、光谱分辨率高等优势, 可扩展现有的地面碳测量网络, 验证卫星观测结果, 并能在卫星观测区域外提供数据覆盖. 本文在现有的激光外差辐射计的基础上, 报道了基于掺铒光纤放大器的可实现本振光功率锁定的近红外激光外差辐射计原型机. 该激光外差辐射计利用一个中心波长为1.603 μm的分布反馈式半导体激光器作为本振光源, 采用掺铒光纤放大器放大本振光功率, 并利用自动功率控制电路实现掺铒光纤放大器输出端光功率的锁定, 消除了由本振光功率变化引起的基线斜率, 从而实现免基线拟合的整层大气透过率谱的测量. 详细评估了基于掺铒光纤放大器的高度集成化的激光外差辐射计的仪器性能, 并在合肥市科学岛(31.9°N, 117.2°E)地区进行了整层大气CO2透过率谱的测量. 在一天的测量时间内得到6组大气CO2透过率谱, 与大气辐射模型模拟结果进行比对, 测量结果一致. 实验结果表明, 掺铒光纤放大器的应用可以提高激光外差辐射计的性能, 优化其结构, 进而为实现无人值守的长期大气CO2浓度观测和构建全面的碳观测网络提供仪器设备的补充.
    Laser heterodyne radiometer has the advantages of low cost, small size, and high spectral resolution. It can expand the existing ground carbon measurement network, verify satellite observation results, and provide data coverage outside the satellite observation area. Using the existing laser heterodyne radiometer, is presented a prototype of near-infrared laser heterodyne radiometer based on the erbium-doped fiber amplifier that can realize local oscillator power locking. In the laser heterodyne radiometer a distributed feedback semiconductor laser with a center wavelength of 1.603 μm is used as a local oscillator light source. The erbium-doped fiber amplifier is used to enhance the local oscillator power, and the automatic power control circuit is adopted to lock the output optical power of the erbium-doped fiber amplifier. The baseline slope caused by the change of the local oscillator power is eliminated, and the whole layer atmospheric transmittance spectrum without baseline fitting is measured. The instrument performance of a highly integrated laser heterodyne radiometer based on an erbium-doped fiber amplifier is evaluated in detail, and the atmospheric CO2 transmittance spectrum is measured in the Science Island (31.9°N, 117.2°E) of Hefei. Six groups of atmospheric CO2 transmittance spectra are obtained during the measurement period of one day, which are compared with the simulation results from an atmospheric radiation model, showing that they are consistent with each other. The experimental results show that the application of erbium-doped fiber amplifier can improve the performance of laser heterodyne radiometer, optimize its structure, and provide equipment supplement for realizing unattended long-term atmospheric CO2 concentration observation and building a comprehensive carbon observation network.
      通信作者: 谈图, tantu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 42075128)和国家重点研发计划(批准号: 2022YFF1300102-1)资助的课题.
      Corresponding author: Tan Tu, tantu@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 42075128) and the National Key Research and Development Program of China (Grant No. 2022YFF1300102-1).
    [1]

    查玲玲, 王薇, 谢宇, 单昌功, 曾祥昱, 孙友文, 殷昊, 胡启后 2022 光谱学与光谱分析 42 1036Google Scholar

    Cha L L, Wang W, Xie Y, Shan C G, Zeng X Y, Sun Y W, Yin H, Hu Q H 2022 Spectrosc. Spect. Anal. 42 1036Google Scholar

    [2]

    Wang J, Sun C, Wang G, Zou M, Tan T, Liu K, Chen W, Gao X 2020 Opt. Lasers. Eng. 129 106083Google Scholar

    [3]

    Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X 2019 Opt. Express. 27 9610Google Scholar

    [4]

    李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图 2022 物理学报 71 074204Google Scholar

    Li J, Xue Z Y, Liu X H, Wang J J, Wang G S, Liu K, Gao X M, Tan T 2022 Acta Phys. Sin. 71 074204Google Scholar

    [5]

    Lu X, Huang Y, Wu P, Liu D, Ma H, Wang G, Cao Z 2022 Remote Sens. 14 1489Google Scholar

    [6]

    薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 物理学报 70 217801Google Scholar

    Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar

    [7]

    Deng H, Li R, Liu H, He Y, Yang C, Li X, Xu Z, Kan R 2022 Opt. Lett. 47 4335Google Scholar

    [8]

    Sappey A, Masterson B, Howell J 2021 Appl. Opt. 61 2697Google Scholar

    [9]

    卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 物理学报 68 064208Google Scholar

    Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar

    [10]

    Xue Z, Shen F, Li J, Liu X, Wang J, Wang G, Chen W, Gao X, Tan T 2022 Opt. Express 30 31828Google Scholar

    [11]

    孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 物理学报 69 144201Google Scholar

    Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar

    [12]

    Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar

    [13]

    Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar

    [14]

    Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, Souders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 Appl. Phys. B 125 211Google Scholar

    [15]

    Zenevich S, Gazizov I, Churbanov D, Plyashkov Y, Spiridonov M, Talipov R, Rodin A 2021 Remote Sens. 13 2235Google Scholar

    [16]

    王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)

    Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [17]

    Deng H, Yang C, Xu Z, Li M, Huang A, Yao L, Hu M, Chen B, He Y, Kan R, Liu J 2021 Opt. Express 29 2003Google Scholar

    [18]

    Huang J, Huang Y, Lu X, Liu D, Yuan Z, Qi G, Cao Z 2022 Front. Phys. 10 835189Google Scholar

    [19]

    Hoffmann A, Huebner M, Macleod N, Weidmann D 2018 Opt. Lett. 43 3810Google Scholar

    [20]

    Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar

    [21]

    Nakazawa M 2014 Opt. Rev. 21 862Google Scholar

    [22]

    Shen F, Wang G, Wang J, Tan T, Wang G, Jeseck P, Te Y, Gao X, Chen W 2021 Opt. Lett. 46 3171Google Scholar

  • 图 1  激光外差辐射计结构示意图. DL, 半导体激光器; EDFA, 掺铒光纤放大器; DFB, 分布反馈式半导体激光器; PD, 光电探测器; Amp, 放大器; Schottky diode, 肖特基二极管

    Fig. 1.  Structure diagram of laser heterodyne radiometer. DL, diode lasers; EDFA, erbium-doped fiber amplifier; DFB, distributed feedback; PD, photodetector; Amp, Amplifier.

    图 2  不同输出电压下激光波数

    Fig. 2.  Laser wavenumber under different output voltages.

    图 3  EDFA原理图、实物图及激光器输出功率变化图 (a) EDFA原理图(ISO, 光隔离器; EDF, 掺铒光纤; WDM, 波分复用器); (b) EDFA实物图; (c) 激光功率(红色实线), 经自动功率控制锁定后的EDFA输出功率(黑色实线)

    Fig. 3.  Schematic diagram and physical diagram of EDFA, and power variation diagram of laser: (a) The schematic diagram of EDFA (ISO, isolator; EDF, erbium-doped fiber; WDM, wavelength division multiplexer); (b) the physical diagram of EDFA; (c) laser power (red solid line), output power of EDFA locked by automatic power control (black solid line).

    图 4  激光外差辐射计实物图

    Fig. 4.  Physical picture of laser heterodyne radiometer.

    图 5  信号功率谱

    Fig. 5.  Signal power spectrum.

    图 6  激光波数及稳定性分析 (a) 激光波数实际值(黑色曲线)与设定值(红色曲线); (b) 激光波数稳定性

    Fig. 6.  Laser wavenumber and stability analysis: (a) The actual value of laser wavenumber (black curve) and the set value (red curve); (b) laser wavenumber stability.

    图 7  外差信号原始数据及艾伦方差曲线函数 (a) 外差信号原始数据; (b) 艾伦方差曲线函数

    Fig. 7.  Original data of heterodyne signal and Allen variance curve function: (a) The original data of heterodyne signal; (b) Allen variance curve function

    图 8  仪器装置的信噪比测量

    Fig. 8.  SNR measurement of instrument device.

    图 9  使用EDFA前(a)后(b)外差信号及基线变化

    Fig. 9.  Heterodyne signal and baseline changes before (a) and after (b) using EDFA.

    图 10  测量期间信号光功率

    Fig. 10.  Power of signal during measurement.

    图 11  实测大气CO2透过率谱与大气辐射模型模拟结果比较 (a) 大气辐射模型模拟结果; (b)实测大气CO2透过率谱

    Fig. 11.  Comparison between the measured atmospheric transmittance spectrum of CO2 and the simulation results of atmospheric radiation model: (a) The simulation results of atmospheric radiation model; (b) the measured atmospheric transmittance spectrum of CO2.

  • [1]

    查玲玲, 王薇, 谢宇, 单昌功, 曾祥昱, 孙友文, 殷昊, 胡启后 2022 光谱学与光谱分析 42 1036Google Scholar

    Cha L L, Wang W, Xie Y, Shan C G, Zeng X Y, Sun Y W, Yin H, Hu Q H 2022 Spectrosc. Spect. Anal. 42 1036Google Scholar

    [2]

    Wang J, Sun C, Wang G, Zou M, Tan T, Liu K, Chen W, Gao X 2020 Opt. Lasers. Eng. 129 106083Google Scholar

    [3]

    Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X 2019 Opt. Express. 27 9610Google Scholar

    [4]

    李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图 2022 物理学报 71 074204Google Scholar

    Li J, Xue Z Y, Liu X H, Wang J J, Wang G S, Liu K, Gao X M, Tan T 2022 Acta Phys. Sin. 71 074204Google Scholar

    [5]

    Lu X, Huang Y, Wu P, Liu D, Ma H, Wang G, Cao Z 2022 Remote Sens. 14 1489Google Scholar

    [6]

    薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 物理学报 70 217801Google Scholar

    Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar

    [7]

    Deng H, Li R, Liu H, He Y, Yang C, Li X, Xu Z, Kan R 2022 Opt. Lett. 47 4335Google Scholar

    [8]

    Sappey A, Masterson B, Howell J 2021 Appl. Opt. 61 2697Google Scholar

    [9]

    卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 物理学报 68 064208Google Scholar

    Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar

    [10]

    Xue Z, Shen F, Li J, Liu X, Wang J, Wang G, Chen W, Gao X, Tan T 2022 Opt. Express 30 31828Google Scholar

    [11]

    孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 物理学报 69 144201Google Scholar

    Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar

    [12]

    Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar

    [13]

    Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar

    [14]

    Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, Souders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 Appl. Phys. B 125 211Google Scholar

    [15]

    Zenevich S, Gazizov I, Churbanov D, Plyashkov Y, Spiridonov M, Talipov R, Rodin A 2021 Remote Sens. 13 2235Google Scholar

    [16]

    王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)

    Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [17]

    Deng H, Yang C, Xu Z, Li M, Huang A, Yao L, Hu M, Chen B, He Y, Kan R, Liu J 2021 Opt. Express 29 2003Google Scholar

    [18]

    Huang J, Huang Y, Lu X, Liu D, Yuan Z, Qi G, Cao Z 2022 Front. Phys. 10 835189Google Scholar

    [19]

    Hoffmann A, Huebner M, Macleod N, Weidmann D 2018 Opt. Lett. 43 3810Google Scholar

    [20]

    Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar

    [21]

    Nakazawa M 2014 Opt. Rev. 21 862Google Scholar

    [22]

    Shen F, Wang G, Wang J, Tan T, Wang G, Jeseck P, Te Y, Gao X, Chen W 2021 Opt. Lett. 46 3171Google Scholar

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图. 激光外差光谱仪模拟风场探测. 物理学报, 2022, 71(7): 074204. doi: 10.7498/aps.71.20211252
    [6] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [7] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [8] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [9] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [10] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法. 物理学报, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [11] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [12] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [13] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [14] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中. 激光外差光谱仪的仪器线型函数研究. 物理学报, 2019, 68(6): 064208. doi: 10.7498/aps.68.20181620
    [15] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [16] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [17] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [18] 邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华. 室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输. 物理学报, 2012, 61(9): 094204. doi: 10.7498/aps.61.094204
    [19] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  3672
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-03-13
  • 上网日期:  2023-03-21
  • 刊出日期:  2023-05-05

/

返回文章
返回