-
受激光强度制约, 单束激光驱动下质子束能量难以提升. 本文提出一种多束超短强激光掠入射微带靶两侧驱动质子加速新方法. 两束激光驱动设置下, 可获得能散度约3%、能量约165 MeV的质子束. 二维粒子模拟显示, 激光在固体靶两侧提取大量准直性高能电子电荷并注入靶后方, 在靶后方自行建立纵向聚束场驱动质子加速和聚束, 形成准单能高能质子束. 研究还表明, 利用四束超短强激光掠入射微带靶两侧, 可获得能散度约2%、能量约250 MeV的质子束. 多激光束驱动质子加速机制为质子束能量提升提供了新的思路, 准单能高能质子束有望在医学治疗领域得到应用.High-energy proton beams have extensive and important applications. Traditional proton accelerators are bulky and costly. The high-power laser pulse technology provides a new proton acceleration scheme based on the interaction between laser and plasma, and has the advantage of miniaturization. Furthermore, comparing with traditional proton accelerators, the proton acceleration gradient by high-power laser pulses can be increased by three orders of magnitude. The proton beams with high brightness, narrow pulse width, and good directionality can be generated in theory within a very small effective size, and they are suitable for fields such as nuclear physics and particle physics, ion beam fast ignition, medical treatment, and proton beam detection. In order to realize laser proton acceleration, a great many of researches of different target configurations and acceleration mechanisms have been reported on proton acceleration driven by ultrashort and high-power lasers. However, owing to the limitation of laser intensity, the energy of proton beam driven by a single-beam laser is difficult to improve to meet the needs of medical applications. In this paper, a new method of driving proton acceleration by multiple ultrashort high-power lasers with grazing incidence on both sides of the microstrip target is proposed. A proton beam with an energy divergence of about 3% and energy of about 165 MeV can be obtained by using the two-beam driving setting. The results of two-dimensional particle-in-cell simulation show that a large number of collimated high-energy electron charges are extracted from both sides of the solid target by laser and injected into the back of the target. A longitudinal bunching field is established on the back of the target, which drives protons to accelerate and bunch to form a quasi-monoenergetic high-energy proton beam. The research also shows that the proton beam with an energy divergence of about 2% and energy of about 250 MeV can be obtained by using four grazing ultrashort high-power lasers on both sides of the microstrip target. The mechanism of multi-laser beams driving proton acceleration provides a new idea for the energy enhancement of the proton beam, and the quasi-monoenergetic high-energy proton beam is expected to be applied to the field of medical treatment.
-
Keywords:
- laser plasma /
- surface plasma wave /
- laser proton acceleration /
- proton energy
[1] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar
[2] 马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报70 084102Google Scholar
Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar
[3] Ledingham K W D, McKenna P, Singhal R P 2003 Science 300 1107Google Scholar
[4] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar
[5] Ruhl H, Cowan T, Dahlburg J, Parks P, Stephens R 2004 Nucl. Fusion 44 438Google Scholar
[6] Hegelich B M, Jung D, Albright B J, Fernandez J C, Gautier D C, Huang C, Kwan T J, Letzring S, Palaniyappan S, Shah R C, Wu H C, Yin L, Henig A, Hörlein R, Kiefer D, Schreiber J, Yan X Q, Tajima T, Habs D, Dromey B, Honrubia J J 2011 Nucl. Fusion 51 083011Google Scholar
[7] Linz U, Alonso J 2016 Phys. Rev. Accel. Beams 19 124802Google Scholar
[8] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240Google Scholar
[9] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明 2019 物理学报68 155201Google Scholar
Li Y J, Yue D N, Deng Y Q, Zhao X, Wei W Q, Ge X L, Yuan X H, Liu F, Chen L M 2019 Acta Phys. Sin. 68 155201Google Scholar
[10] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001Google Scholar
[11] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar
[12] Hegelich M, Karsch S, Pretzler G, Habs D, Witte K, Guenther W, Allen M, Blazevic A, Fuchs J, Gauthier J C, Geissel M, Audebert P, Cowan T, Roth M 2002 Phys. Rev. Lett. 89 085002Google Scholar
[13] Allen M, Patel P K, Mackinnon A, Price D, Wilks S, Morse E 2004 Phys. Rev. Lett. 93 265004Google Scholar
[14] Dover N P, Nishiuchi M, Sakaki H, Kondo K, Alkhimova M A, Faenov A Y, Hata M, Iwata N, Kiriyama H, Koga J K, Miyahara T, Pikuz T A, Pirozhkov A S, Sagisaka A, Sentoku Y, Watanabe Y, Kando M, Kondo K 2020 Phys. Rev. Lett. 124 084802Google Scholar
[15] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar
[16] Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002Google Scholar
[17] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002Google Scholar
[18] Wan Y, Andriyash I A, Lu W, Mori W B, Malka V 2020 Phys. Rev. Lett. 125 104801Google Scholar
[19] Nakatsutsumi M, Sentoku Y, Korzhimanov A, Chen S N, Buffechoux S, Kon A, Atherton B, Audebert P, Geissel M, Hurd L, Kimmel M, Rambo P, Schollmeier M, Schwarz J, Starodubtsev M, Gremillet L, Kodama R, Fuchs J 2018 Nat. Commun. 9 280Google Scholar
[20] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stöhlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002Google Scholar
[21] Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724Google Scholar
[22] Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2006 Nature 439 445Google Scholar
[23] Xu Y X, Wang J X, Qi X, Li M, Xing Y F, Yang L, Zhu W J 2017 Phys. Plasmas 24 033108Google Scholar
[24] Zou D B, Yu D Y, Jiang X R, Yu M Y, Chen Z Y, Deng Z G, Yu T P, Yin Y, Shao F Q, Zhuo H B, Zhou C T, Ruan S C 2019 Phys. Plasmas 26 123105Google Scholar
[25] Liu P, Qu J F, Liu X Y, Li X F, Cai L, Tang J Y, Kong Q 2020 Phys. Rev. Accel. Beams 23 011303Google Scholar
[26] Shen X F, Qiao B, Zhang H, Xie Y, Kar S, Borghesi M, Zepf M, Zhou C T, Zhu S P, He X T 2019 Appl. Phys. Lett. 114 144102Google Scholar
[27] Zhang X M, Shen B F, Ji L L, Wang F C, Wen M, Wang W P, Xu J C, Yu Y H 2010 Phys. Plasmas 17 123102Google Scholar
[28] Ma W J, Kim I J, Yu J Q, Choi I W, Singh P K, Lee H W, Sung J H, Lee S K, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phys. Rev. Lett. 122 014803Google Scholar
[29] Arber T D, Bennett K, Brady C S, Lawrence D A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Contr. F. 57 113001Google Scholar
[30] Perelomov A M, Popov V S, Terentev M V 1966 Sov. Phys. JETP 23 924
[31] Perelomov A M, Popov V S, Terentev M V 1967 Sov. Phys. JETP 24 207
[32] Cantono G, Sgattoni A, Fedeli L, Garzella D, Réau F, Riconda C, Macchi A, Ceccotti T 2018 Phys. Plasmas 25 031907Google Scholar
[33] Shen X F, Pukhov A, Qiao B 2021 Phys. Rev. X 11 041002Google Scholar
[34] Sarma J, McIlvenny A, Das N, Borghesi M, Macchi A 2022 New J. Phys. 24 073023Google Scholar
[35] Marini S, Kleij P S, Pisani F, Amiranoff F, Grech M, Macchi A, Raynaud M, Riconda C 2021 Phys. Rev. E 103 L021201Google Scholar
-
图 2
$ {84 T}_{0} $ 时刻的二维PIC模拟结果和电子能谱分布 (a) 电子密度谱; (b) 纵向场$ {E}_{{\rm{s}}{\rm{p}}} $ 的分布; (c) 横向场$ {E}_{y} $ 的分布; (d) 平均自生磁场$ {B}_{z} $ 的分布; (e)$ {40 T}_{0} $ ,$ {70 T}_{0} $ ,$ {105 T}_{0} $ 时刻的电子能谱Fig. 2. Two-dimensional PIC simulation results at
$ {84 T}_{0} $ and the distribution of electron energy spectrum: (a) Electron density spectrum; (b) distribution of longitudinal electric field$ {E}_{{\rm{s}}{\rm{p}}} $ ; (c) distribution of transverse electric field$ {E}_{y} $ ; (d) distribution of the averaged self-generated magnetic field$ {B}_{z} $ ; (e) electron energy spectra at$ {40 T}_{0} $ ,$ {70 T}_{0} $ , and$ {105 T}_{0} $ .图 3 靶后粒子密度分布、靶后纵向聚束场和质子束能谱分布 (a)
$ {144 T}_{0} $ 时刻电子密度谱; (b)$ {144 T}_{0} $ 时刻质子密度谱; (c)$ {144 T}_{0} $ 时刻靶后纵向场$ {E}_{x} $ 的分布; (d)$ {128 T}_{0} $ ,$ {145 T}_{0} $ ,$ {171 T}_{0} $ 时刻的质子能谱Fig. 3. Particle density distribution and longitudinal focusing field behind the target and proton beam energy spectrum distribution: (a) Electron density spectrum at
$ {144 T}_{0} $ ; (b) proton density spectrum at$ {144 T}_{0} $ ; (c) distribution of longitudinal field$ {E}_{x} $ at$ {144 T}_{0} $ ; (d) proton energy spectra at$ {128 T}_{0} $ ,$ {145 T}_{0} $ , and$ {171 T}_{0} $ .图 4 四束飞秒激光脉冲与微带靶相互作用示意图和二维PIC模拟结果 (a) 四束激光分别以10°、15° 掠入射平面固体靶; (b) 黑线为四束激光靶后纵向聚束场, 红色虚线为两束激光靶后纵向聚束场; (c) 横向场
$ {E}_{y} $ 的分布; (d) 黑线为四束激光质子截止能量, 红色虚线为两束激光质子截止能量Fig. 4. Schematic diagram of the interaction between four femtosecond laser pulses and a microstrip target and two-dimensional PIC simulation results: (a) Four laser beams are incident on the solid target at grazing angles of 10° and 15°, respectively; (b) the black line shows the longitudinal focusing field behind the target for four laser beams, and the red dashed line shows the longitudinal focusing field behind the target for two laser beams; (c) distribution of transverse electric field
$ {E}_{y} $ ; (d) the black curve shows the proton cutoff energy for four laser beams, and the red dashed curve shows the proton cutoff energy for two laser beams. -
[1] Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar
[2] 马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报70 084102Google Scholar
Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar
[3] Ledingham K W D, McKenna P, Singhal R P 2003 Science 300 1107Google Scholar
[4] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar
[5] Ruhl H, Cowan T, Dahlburg J, Parks P, Stephens R 2004 Nucl. Fusion 44 438Google Scholar
[6] Hegelich B M, Jung D, Albright B J, Fernandez J C, Gautier D C, Huang C, Kwan T J, Letzring S, Palaniyappan S, Shah R C, Wu H C, Yin L, Henig A, Hörlein R, Kiefer D, Schreiber J, Yan X Q, Tajima T, Habs D, Dromey B, Honrubia J J 2011 Nucl. Fusion 51 083011Google Scholar
[7] Linz U, Alonso J 2016 Phys. Rev. Accel. Beams 19 124802Google Scholar
[8] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240Google Scholar
[9] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明 2019 物理学报68 155201Google Scholar
Li Y J, Yue D N, Deng Y Q, Zhao X, Wei W Q, Ge X L, Yuan X H, Liu F, Chen L M 2019 Acta Phys. Sin. 68 155201Google Scholar
[10] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001Google Scholar
[11] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar
[12] Hegelich M, Karsch S, Pretzler G, Habs D, Witte K, Guenther W, Allen M, Blazevic A, Fuchs J, Gauthier J C, Geissel M, Audebert P, Cowan T, Roth M 2002 Phys. Rev. Lett. 89 085002Google Scholar
[13] Allen M, Patel P K, Mackinnon A, Price D, Wilks S, Morse E 2004 Phys. Rev. Lett. 93 265004Google Scholar
[14] Dover N P, Nishiuchi M, Sakaki H, Kondo K, Alkhimova M A, Faenov A Y, Hata M, Iwata N, Kiriyama H, Koga J K, Miyahara T, Pikuz T A, Pirozhkov A S, Sagisaka A, Sentoku Y, Watanabe Y, Kando M, Kondo K 2020 Phys. Rev. Lett. 124 084802Google Scholar
[15] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar
[16] Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002Google Scholar
[17] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002Google Scholar
[18] Wan Y, Andriyash I A, Lu W, Mori W B, Malka V 2020 Phys. Rev. Lett. 125 104801Google Scholar
[19] Nakatsutsumi M, Sentoku Y, Korzhimanov A, Chen S N, Buffechoux S, Kon A, Atherton B, Audebert P, Geissel M, Hurd L, Kimmel M, Rambo P, Schollmeier M, Schwarz J, Starodubtsev M, Gremillet L, Kodama R, Fuchs J 2018 Nat. Commun. 9 280Google Scholar
[20] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stöhlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002Google Scholar
[21] Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724Google Scholar
[22] Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2006 Nature 439 445Google Scholar
[23] Xu Y X, Wang J X, Qi X, Li M, Xing Y F, Yang L, Zhu W J 2017 Phys. Plasmas 24 033108Google Scholar
[24] Zou D B, Yu D Y, Jiang X R, Yu M Y, Chen Z Y, Deng Z G, Yu T P, Yin Y, Shao F Q, Zhuo H B, Zhou C T, Ruan S C 2019 Phys. Plasmas 26 123105Google Scholar
[25] Liu P, Qu J F, Liu X Y, Li X F, Cai L, Tang J Y, Kong Q 2020 Phys. Rev. Accel. Beams 23 011303Google Scholar
[26] Shen X F, Qiao B, Zhang H, Xie Y, Kar S, Borghesi M, Zepf M, Zhou C T, Zhu S P, He X T 2019 Appl. Phys. Lett. 114 144102Google Scholar
[27] Zhang X M, Shen B F, Ji L L, Wang F C, Wen M, Wang W P, Xu J C, Yu Y H 2010 Phys. Plasmas 17 123102Google Scholar
[28] Ma W J, Kim I J, Yu J Q, Choi I W, Singh P K, Lee H W, Sung J H, Lee S K, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phys. Rev. Lett. 122 014803Google Scholar
[29] Arber T D, Bennett K, Brady C S, Lawrence D A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Contr. F. 57 113001Google Scholar
[30] Perelomov A M, Popov V S, Terentev M V 1966 Sov. Phys. JETP 23 924
[31] Perelomov A M, Popov V S, Terentev M V 1967 Sov. Phys. JETP 24 207
[32] Cantono G, Sgattoni A, Fedeli L, Garzella D, Réau F, Riconda C, Macchi A, Ceccotti T 2018 Phys. Plasmas 25 031907Google Scholar
[33] Shen X F, Pukhov A, Qiao B 2021 Phys. Rev. X 11 041002Google Scholar
[34] Sarma J, McIlvenny A, Das N, Borghesi M, Macchi A 2022 New J. Phys. 24 073023Google Scholar
[35] Marini S, Kleij P S, Pisani F, Amiranoff F, Grech M, Macchi A, Raynaud M, Riconda C 2021 Phys. Rev. E 103 L021201Google Scholar
计量
- 文章访问数: 3812
- PDF下载量: 89
- 被引次数: 0