-
在波长慢速均匀扫描和波长快速周期调制的情况下, 基于激光吸收光谱的实验数据, 提出了利用激光调制频率和激光扫描范围两个参数以及透射波信号和参考波信号反演谱线吸收函数的矩阵切片方法. 当波长调制为单频正弦调制时, 利用透射波信号和参考波信号的相除结果得到的矩阵, 通过两个相距半个调制周期的切片积分的最小值即可得到准确的谱线吸收函数轮廓, 并能反演出调制幅度的大小. 当波长的快速调制扭曲为非单频的多频叠加调制时, 可以利用多个切片的互补形成谱线吸收函数. 上述方法可以用于在扫描波长范围内包含由多条吸收谱线且有重叠的真实吸收函数反演过程. 而且, 可以利用扫描波长范围内多条谱线的间隔参数来标定激光波长的扫描范围. 采用上述的矩阵切片法, 通过实验验证, 得到了低吸收状况下CO在4300.700 cm–1吸收谱线的吸收函数和较强吸收状况下CO2在6336 cm–1附近2条吸收谱线的吸收函数信息.Based on the tested data of laser absorption spectra, a matrix slicing method is proposed to invert the absorption function of spectral lines by using the two parameters of laser modulation frequency and laser scanning range as well as transmitted wave signal and reference wave signal under the condition of slow uniform scanning wavelength and fast periodic modulation wavelength. When the modulation is single frequency sinusoidal modulation, an accurate contour of the spectral line absorption function can be obtained by using the matrix data consisting of the values of the transmitted wave signal by the reference wave signal through the minimum value of two slice integrals with the interval of half modulation period, and the amplitude of modulation can be estimated. When the fast modulation of the wavelength is distorted to the multi-frequency superposition modulation, the absorption function is also formed by using the complementarity of multiple slices. The method above is utilized for investigating a real absorption function inversion process involving multiple overlapping absorption lines in the range of the scanning wavelengths. Moreover, the scanning range of laser wavelength can be calibrated by the interval parameters of several spectral lines in the scanning wavelength range. The absorption function of CO at 4300.700 cm–1 and CO2 at 6336 cm–1 are successfully obtained by using this matrix slice method for experimental verification.
-
Keywords:
- wavelength modulation /
- wavelength scanning /
- absorption function /
- data matrix
[1] Werle P A 1998 Spectrochim. Acta. A 54 197Google Scholar
[2] Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987Google Scholar
[3] Reid J, Labrie D 1981 Appl. Phys. B: Photophys. Laser Chem. 26 203Google Scholar
[4] Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546Google Scholar
[5] Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723Google Scholar
[6] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[7] Wang F, Jia S H, Wang Y L, Tang Z H 2019 Appl. Sci-Basel. 9 9142816Google Scholar
[8] Stewart G, Johnstone W, Bain J R P, Ruxton K, Duffin K 2011 J. Lightw. Technol. 29 811Google Scholar
[9] McGettrick J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. Lightw. Technol. 26 432Google Scholar
[10] Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightw. Technol. 25 3114Google Scholar
[11] Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar
[12] Peng Z M, Du Y J, Ding Y J 2020 Sensors. 20 681Google Scholar
[13] Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar
[14] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976Google Scholar
[15] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[16] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[17] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104Google Scholar
[18] Tao B, Lei Q C, Ye J F, Zhang Z R, Hu Z Y, Fan W 2020 Appl. Phys. B: Lasers Opt. 126 31Google Scholar
[19] Tian X, Cao Y, Chen J J, Liu K, Wang G S, Tan T, Mei J X, Chen W D, Gao X M 2019 Sens. 19 820Google Scholar
[20] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar
[21] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar
[22] Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar
[23] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51Google Scholar
[24] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2007 J. Quant. Spectrosc. Radiat. Transfer. 201 136Google Scholar
[25] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar
-
图 2 (a) 对应的两个间隔半个周期的吸收函数面积绝对值之差随调制时间的演化曲线; (b) 两个标准吸收函数曲线和调制时间偏置1/4周期对应的吸收函数曲线; (c) 图(b)中的两个标准吸收函数曲线和理论值的残值误差
Fig. 2. (a) Evolution curve of the difference of the absolute values of the areas of two absorption function with a half-period interval; (b) the two standard absorption function curves and the absorption function curves with an offset of 1/4 period; (c) the residuals of the two standard absorption functions in panel (b) and theoretical values.
图 3 (a) 调制为3个频率的叠加时A
$\varphi$ 数据矩阵对应的等高吸收线图; (b) 利用等高吸收图得到的以吸收最大值出现在零波数点的吸收函数曲线Fig. 3. (a) Contour absorption map of the data matrix for A
${\varphi }$ with a superposition modulation of three frequencies; (b) the absorption function curve obtained by using contour absorption graph where the absorption maximum is defined at the zero point of the wavenumber changing.图 7 利用图6所示的实验得到的数据矩阵和时间间隔为半个调制周期的两个切片沿波长扫描方向积分值之差的最小绝对值得到的吸收光谱轮廓 (a) CO; (b) CO2
Fig. 7. Absorption spectrum profiles for (a) CO and (b) CO2 by minimizing the absolute difference of the integral values along the center wavelength scanning direction between two slices with an interval of half a modulation period and based on the matrix data shown in Fig. 6.
-
[1] Werle P A 1998 Spectrochim. Acta. A 54 197Google Scholar
[2] Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987Google Scholar
[3] Reid J, Labrie D 1981 Appl. Phys. B: Photophys. Laser Chem. 26 203Google Scholar
[4] Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546Google Scholar
[5] Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723Google Scholar
[6] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[7] Wang F, Jia S H, Wang Y L, Tang Z H 2019 Appl. Sci-Basel. 9 9142816Google Scholar
[8] Stewart G, Johnstone W, Bain J R P, Ruxton K, Duffin K 2011 J. Lightw. Technol. 29 811Google Scholar
[9] McGettrick J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. Lightw. Technol. 26 432Google Scholar
[10] Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightw. Technol. 25 3114Google Scholar
[11] Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar
[12] Peng Z M, Du Y J, Ding Y J 2020 Sensors. 20 681Google Scholar
[13] Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar
[14] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976Google Scholar
[15] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[16] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[17] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104Google Scholar
[18] Tao B, Lei Q C, Ye J F, Zhang Z R, Hu Z Y, Fan W 2020 Appl. Phys. B: Lasers Opt. 126 31Google Scholar
[19] Tian X, Cao Y, Chen J J, Liu K, Wang G S, Tan T, Mei J X, Chen W D, Gao X M 2019 Sens. 19 820Google Scholar
[20] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar
[21] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar
[22] Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar
[23] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51Google Scholar
[24] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2007 J. Quant. Spectrosc. Radiat. Transfer. 201 136Google Scholar
[25] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar
计量
- 文章访问数: 2819
- PDF下载量: 69
- 被引次数: 0