搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用波长慢速扫描和快速调制激光吸收光谱实验数据反演光谱吸收函数的理论和实验研究

黄知秋 李启正 张猛 彭志敏 杨乾锁

引用本文:
Citation:

利用波长慢速扫描和快速调制激光吸收光谱实验数据反演光谱吸收函数的理论和实验研究

黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁

Theoretical and experimental study of inversion of spectral absorption function using experimental data of laser absorption spectrum with slow scanning and fast modulation of wavelength

Huang Zhi-Qiu, Li Qi-Zheng, Zhang Meng, Peng Zhi-Min, Yang Qian-Suo
PDF
HTML
导出引用
  • 在波长慢速均匀扫描和波长快速周期调制的情况下, 基于激光吸收光谱的实验数据, 提出了利用激光调制频率和激光扫描范围两个参数以及透射波信号和参考波信号反演谱线吸收函数的矩阵切片方法. 当波长调制为单频正弦调制时, 利用透射波信号和参考波信号的相除结果得到的矩阵, 通过两个相距半个调制周期的切片积分的最小值即可得到准确的谱线吸收函数轮廓, 并能反演出调制幅度的大小. 当波长的快速调制扭曲为非单频的多频叠加调制时, 可以利用多个切片的互补形成谱线吸收函数. 上述方法可以用于在扫描波长范围内包含由多条吸收谱线且有重叠的真实吸收函数反演过程. 而且, 可以利用扫描波长范围内多条谱线的间隔参数来标定激光波长的扫描范围. 采用上述的矩阵切片法, 通过实验验证, 得到了低吸收状况下CO在4300.700 cm–1吸收谱线的吸收函数和较强吸收状况下CO2在6336 cm–1附近2条吸收谱线的吸收函数信息.
    Based on the tested data of laser absorption spectra, a matrix slicing method is proposed to invert the absorption function of spectral lines by using the two parameters of laser modulation frequency and laser scanning range as well as transmitted wave signal and reference wave signal under the condition of slow uniform scanning wavelength and fast periodic modulation wavelength. When the modulation is single frequency sinusoidal modulation, an accurate contour of the spectral line absorption function can be obtained by using the matrix data consisting of the values of the transmitted wave signal by the reference wave signal through the minimum value of two slice integrals with the interval of half modulation period, and the amplitude of modulation can be estimated. When the fast modulation of the wavelength is distorted to the multi-frequency superposition modulation, the absorption function is also formed by using the complementarity of multiple slices. The method above is utilized for investigating a real absorption function inversion process involving multiple overlapping absorption lines in the range of the scanning wavelengths. Moreover, the scanning range of laser wavelength can be calibrated by the interval parameters of several spectral lines in the scanning wavelength range. The absorption function of CO at 4300.700 cm–1 and CO2 at 6336 cm–1 are successfully obtained by using this matrix slice method for experimental verification.
      通信作者: 杨乾锁, qsyang@imech.ac.cn
      Corresponding author: Yang Qian-Suo, qsyang@imech.ac.cn
    [1]

    Werle P A 1998 Spectrochim. Acta. A 54 197Google Scholar

    [2]

    Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987Google Scholar

    [3]

    Reid J, Labrie D 1981 Appl. Phys. B: Photophys. Laser Chem. 26 203Google Scholar

    [4]

    Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546Google Scholar

    [5]

    Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723Google Scholar

    [6]

    Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar

    [7]

    Wang F, Jia S H, Wang Y L, Tang Z H 2019 Appl. Sci-Basel. 9 9142816Google Scholar

    [8]

    Stewart G, Johnstone W, Bain J R P, Ruxton K, Duffin K 2011 J. Lightw. Technol. 29 811Google Scholar

    [9]

    McGettrick J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. Lightw. Technol. 26 432Google Scholar

    [10]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightw. Technol. 25 3114Google Scholar

    [11]

    Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar

    [12]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors. 20 681Google Scholar

    [13]

    Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar

    [14]

    Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976Google Scholar

    [15]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [16]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [17]

    Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104Google Scholar

    [18]

    Tao B, Lei Q C, Ye J F, Zhang Z R, Hu Z Y, Fan W 2020 Appl. Phys. B: Lasers Opt. 126 31Google Scholar

    [19]

    Tian X, Cao Y, Chen J J, Liu K, Wang G S, Tan T, Mei J X, Chen W D, Gao X M 2019 Sens. 19 820Google Scholar

    [20]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar

    [21]

    Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar

    [22]

    Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar

    [23]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51Google Scholar

    [24]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2007 J. Quant. Spectrosc. Radiat. Transfer. 201 136Google Scholar

    [25]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar

  • 图 1  (a) 3个吸收谱线的吸收函数; (b) 利用波长的慢速均匀扫描和快速单频正弦调制得到的$A\varphi$数据矩阵等高图像

    Fig. 1.  (a) Absorption function of three absorption lines; (b) the contour image of the data matrix for ${A}{\varphi }$ with a slow uniform scanning of the center wavelength and a fast sinusoidal modulation.

    图 2  (a) 对应的两个间隔半个周期的吸收函数面积绝对值之差随调制时间的演化曲线; (b) 两个标准吸收函数曲线和调制时间偏置1/4周期对应的吸收函数曲线; (c) 图(b)中的两个标准吸收函数曲线和理论值的残值误差

    Fig. 2.  (a) Evolution curve of the difference of the absolute values of the areas of two absorption function with a half-period interval; (b) the two standard absorption function curves and the absorption function curves with an offset of 1/4 period; (c) the residuals of the two standard absorption functions in panel (b) and theoretical values.

    图 3  (a) 调制为3个频率的叠加时A$\varphi$数据矩阵对应的等高吸收线图; (b) 利用等高吸收图得到的以吸收最大值出现在零波数点的吸收函数曲线

    Fig. 3.  (a) Contour absorption map of the data matrix for A${\varphi }$with a superposition modulation of three frequencies; (b) the absorption function curve obtained by using contour absorption graph where the absorption maximum is defined at the zero point of the wavenumber changing.

    图 4  波长慢速均匀变化和快速调制激光吸收光谱实验装置

    Fig. 4.  Experimental apparatus for laser absorption spectra with slow uniform wavelength scanning and fast wavelength modulation.

    图 5  (a) CO和 (b) CO2波长扫描和调制的激光吸收光谱实验数据

    Fig. 5.  Tested data of the laser absorption spectroscopy experiments for (a) CO and (b) CO2 with the slow scanning and fast modulation of the laser wavelength.

    图 6  (a) CO和(b) CO2波长扫描和调制的激光吸收光谱实验数据对应的A$\varphi$数据矩阵

    Fig. 6.  Contour image of the data matrix for A${\varphi }$ from the laser absorption spectroscopy experiments for (a) CO and (b) CO2 with the slow scanning and fast modulation of the laser wavelength.

    图 7  利用图6所示的实验得到的数据矩阵和时间间隔为半个调制周期的两个切片沿波长扫描方向积分值之差的最小绝对值得到的吸收光谱轮廓 (a) CO; (b) CO2

    Fig. 7.  Absorption spectrum profiles for (a) CO and (b) CO2 by minimizing the absolute difference of the integral values along the center wavelength scanning direction between two slices with an interval of half a modulation period and based on the matrix data shown in Fig. 6.

    图 8  在两种测量中, 从对应的数据矩阵中选择不同波长调制相位处的数据切片轮廓所得到的气体吸收函数轮廓 (a) CO; (b) CO2

    Fig. 8.  Spectral absorption function obtained by the data slice contours selected from the two tested data matrix with different wavelength modulation phases: (a) CO; (b) CO2.

  • [1]

    Werle P A 1998 Spectrochim. Acta. A 54 197Google Scholar

    [2]

    Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987Google Scholar

    [3]

    Reid J, Labrie D 1981 Appl. Phys. B: Photophys. Laser Chem. 26 203Google Scholar

    [4]

    Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546Google Scholar

    [5]

    Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723Google Scholar

    [6]

    Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar

    [7]

    Wang F, Jia S H, Wang Y L, Tang Z H 2019 Appl. Sci-Basel. 9 9142816Google Scholar

    [8]

    Stewart G, Johnstone W, Bain J R P, Ruxton K, Duffin K 2011 J. Lightw. Technol. 29 811Google Scholar

    [9]

    McGettrick J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. Lightw. Technol. 26 432Google Scholar

    [10]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightw. Technol. 25 3114Google Scholar

    [11]

    Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar

    [12]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors. 20 681Google Scholar

    [13]

    Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar

    [14]

    Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976Google Scholar

    [15]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [16]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [17]

    Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104Google Scholar

    [18]

    Tao B, Lei Q C, Ye J F, Zhang Z R, Hu Z Y, Fan W 2020 Appl. Phys. B: Lasers Opt. 126 31Google Scholar

    [19]

    Tian X, Cao Y, Chen J J, Liu K, Wang G S, Tan T, Mei J X, Chen W D, Gao X M 2019 Sens. 19 820Google Scholar

    [20]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar

    [21]

    Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar

    [22]

    Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar

    [23]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51Google Scholar

    [24]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2007 J. Quant. Spectrosc. Radiat. Transfer. 201 136Google Scholar

    [25]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2022, 71(4): 044205. doi: 10.7498/aps.71.20211772
    [3] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [4] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211772
    [5] 王振, 杜艳君, 丁艳军, 彭志敏. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定. 物理学报, 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [6] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度. 物理学报, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [7] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [8] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [9] 张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏. 基于波长调制光谱技术的线宽测量理论及其应用研究. 物理学报, 2015, 64(5): 053301. doi: 10.7498/aps.64.053301
    [10] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [11] 邓舒鹏, 黄文彬, 刘永刚, 刁志辉, 彭增辉, 姚丽双, 宣丽. 基于全息液晶/聚合物光栅的分布反馈式激光器的波长调谐特性研究. 物理学报, 2012, 61(12): 126101. doi: 10.7498/aps.61.126101
    [12] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [13] 王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明. 基于石英音叉增强型光谱技术(QEPAS)的实时探测系统研究. 物理学报, 2012, 61(12): 120701. doi: 10.7498/aps.61.120701
    [14] 朱启华, 周寿桓, 赵磊, 曾小明, 黄征, 周凯南, 王逍, 黄小军, 冯国英. 利用光孤子机制实现超宽范围波长调谐的理论和实验研究. 物理学报, 2011, 60(8): 084215. doi: 10.7498/aps.60.084215
    [15] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [16] 黄建亮, 卫炀, 马文全, 杨涛, 陈良惠. InAs/InxGa1-xSb二类超晶格红外探测器的吸收波长与电子-空穴波函数交叠的研究. 物理学报, 2010, 59(5): 3099-3106. doi: 10.7498/aps.59.3099
    [17] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [18] 王 飞, 黄群星, 李 宁, 严建华, 池 涌, 岑可法. 利用可调谐半导体激光光谱技术对含尘气体中NH3的测量. 物理学报, 2007, 56(7): 3867-3872. doi: 10.7498/aps.56.3867
    [19] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究. 物理学报, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [20] 林文雄, 沈鸿元. 一种新型结构的Nd∶YAlO3双波长调Q脉冲激光器. 物理学报, 1999, 48(4): 667-672. doi: 10.7498/aps.48.667
计量
  • 文章访问数:  3174
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-11
  • 修回日期:  2023-04-17
  • 上网日期:  2023-04-21
  • 刊出日期:  2023-06-20

/

返回文章
返回