搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的单拍冷原子成像

应大卫 张思慧 邓书金 武海斌

引用本文:
Citation:

基于机器学习的单拍冷原子成像

应大卫, 张思慧, 邓书金, 武海斌

Single shot imaging for cold atoms based on machine learning

Ying Da-Wei, Zhang Si-Hui, Deng Shu-Jin, Wu Hai-Bin
PDF
HTML
导出引用
  • 在冷原子研究中, 通常采用吸收成像的方式来进行冷原子状态的探测, 然而该成像方式受探测过程中光学平面干涉、激光功率、频率、空间位置抖动等方面的扰动, 最终形成的冷原子图像总是会出现残余部分空间结构噪声, 导致成像质量的下降. 尤其是对于冷原子密度稀薄的区域或者飞行时间较久的情况, 往往需要大量的重复和平均才能得到理想的信噪比, 然而这样不仅导致时间周期大幅度增加, 还会引入大量随机噪声. 本文基于机器学习提出了一种单拍冷原子成像方案, 在该方案中仅需对冷原子进行单次吸收成像, 对应背景图片可以通过自动编码器的神经网络来进行生成, 有效地降低了成像的空间条纹噪声, 大幅度提高成像质量, 可以用于冷原子单循环多次成像.
    The ability to detect atoms in high spatiotemporal resolution provides a powerful tool for us to investigate the quantum properties of ultracold quantum gases. Plenty of useful imaging methods, including absorption imaging, phase contrast imaging and fluorescence imaging, have been implemented in detecting atoms. Among them, absorption imaging is the most widely used method in cold atoms laboratory. However, the traditional absorption imaging method is affected by perturbations such as interference between optical elements, fluctuation of laser power, frequency, and spatial position, resulting in residual spatially structured noise and degradation of imaging quality. Especially for regions with lower density or for longer time-of-flight, a large number of repetitions are often required to obtain better signal-to-noise ratio, which would increase the time cost and induce other noise. One must reduce the time between two imaging pulses to suppress the spatial noise. A better charge coupled device (CCD) with higher frame transfer rate or other method like fast-kinetic mode will be used to improve the imaging quality. In this paper, a single-shot cold atom imaging method based on machine learning is proposed, in which only one absorption imaging of cold atoms is required, and the corresponding background image can be generated through the neural network of an autoencoder. This effectively reduces the spatial striped noise in imaging, significantly improves the imaging quality, and makes it possible for cold atoms to be imaged multiple times in a single cycle.
      通信作者: 邓书金, sjdeng@lps.ecnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12174105, 11925401, 12234008)、科技部重点研发计划 (批准号: 2022YFA1404202) 和上海市“科技创新行动计划”启明星项目(批准号: 23QA1402700)资助的课题.
      Corresponding author: Deng Shu-Jin, sjdeng@lps.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174105, 11925401, 12234008), the National Key Research and Development Program of China (Grant No. 2022YFA1404202), and the Shanghai’s “Science and Technology Innovation Action” Rising-Star Program, China (Grant No. 23QA1402700).
    [1]

    Bhushan S, Chauhan V S, Easwaran R K 2018 Phys. Lett. A 382 3500Google Scholar

    [2]

    Jones M P, Marcassa L G, Shaffer J P 2017 J. Phys. B 50 060202Google Scholar

    [3]

    Lee W, Kim H, Ahn J 2017 Phys. Rev. A 95 053424Google Scholar

    [4]

    Sutherland R T, Robicheaux F 2016 Phys. Rev. A 94 013847Google Scholar

    [5]

    Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003Google Scholar

    [6]

    Childs A M, Preskill J, Renes J 2000 J. Mod. Opt. 47 155Google Scholar

    [7]

    Thomas P N, Smith B J, Datta A, Zhang L, Dorner U, Walmsley I A 2011 Phys. Rev. Lett. 107 113603Google Scholar

    [8]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [9]

    Ketterle W, Zwierlein M 2008 La Rivista del Nuovo Cimento 31 247

    [10]

    Woo S, Park J, Lee J Y, Kweon I S 2018 Proceedings of the European conference on computer vision (ECCV) Munich, Germany, September 8–14, 2018 p3

    [11]

    Hu J, Shen L, Sun G 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Salt Lake City, June 18–21, 2018 p7132

    [12]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [13]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar

    [14]

    Mehta P, Bukov M, Wang C H, Day A G, Richardson C, Fisher C K, Schwab D J 2019 Phys. Rep. 810 1Google Scholar

    [15]

    Nakamura I, Kanemura A, Nakaso T, Yamamoto R, Fukuhara T 2019 Opt. Express 27 20435Google Scholar

    [16]

    Barker A J, Style H, Luksch K, Sunami S, Garrick D, Hill F, Foot C J, Bentine E 2020 Mach. Learn.-Sci. Technol. 1 015007Google Scholar

    [17]

    Ness G, Vainbaum A, Shkedrov C, Florshaim Y, Sagi Y 2020 Phys. Rev. Appl. 14 014011Google Scholar

    [18]

    Shkedrov C, Florshaim Y, Ness G, Gandman A, Sagi Y 2018 Phys. Rev. Lett. 121 093402Google Scholar

    [19]

    Ness G, Shkedrov C, Florshaim Y, Sagi Y 2018 New J. Phys. 20 095002Google Scholar

    [20]

    Deng S, Shi Z Y, Diao P, Yu Q, Zhai H, Qi R, Wu H 2016 Science 353 371Google Scholar

    [21]

    Deng S, Chenu A, Diao P, Li F, Yu S, Coulamy I, Wu H 2018 Sci. Adv. 4 5909Google Scholar

    [22]

    Ronneberger O, Fischer P, Brox T 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention Munich, Germany, October 5–9, 2015 p234

    [23]

    Spall J C 2012 Handbook of Computational Statistics: Concepts and methods (Vol. 1) (Berlin: Springer) p173

    [24]

    He K, Zhang X, Ren S, Sun J 2015 Proceedings of the IEEE International Conference on Computer Vision Washington DC, December 7–13, 2015 p1026

    [25]

    Jacobs R A 1988 Neural Networks 1 295Google Scholar

    [26]

    Ioffe S, Szegedy C 2015 International Conference on Machine Learning Lille, France, July 6–11, 2015 p448

    [27]

    Taylor L, Nitschke G 2018 IEEE Symposium Series on Computational Intelligence (SSCI) Bangalore, India, November 18–21, 2018 p1542

  • 图 1  U-net 神经网络架构

    Fig. 1.  U-net neural network architecture.

    图 2  损失函数随着DNN训练次数的变化过程, 即模型预测和真实值之间的均方误差作为训练迭代次数的函数, 较低的值意味着更好的预测性能. 黄色的曲线表示验证集的损失函数, 蓝色曲线是训练集上的损失函数

    Fig. 2.  The loss function varies with the training iterations of the DNN, which is the mean square error between model predictions and true values as a function of training iterations(epochs), and a lower value indicates better prediction performance. The yellow line represents the loss function on the validation set, and the blue line represents the loss function on the training set.

    图 3  神经网络预测的成像信息和实际拍摄的结果对比图(无原子信息部分) (a), (c) 神经网络预测的光学密度图及其傅里叶空间分布; (b), (d) 实际双拍成像的光学密度图及其傅里叶空间分布; (e) 频谱空间的噪声对比图

    Fig. 3.  Comparison of images predicted by neural networks and actual captured results (excluding atomic information): (a), (c) The optical density and Fourier space distribution of images generated by neural networks; (b), (d) the optical density and Fourier space distribution of actual double-shot imaging; (e) comparison of noise in frequency space.

    图 4  神经网络预测的成像信息和实际拍摄的结果对比图(原子信息部分) (a) 经网络预测生成的无条纹的原子密度分布图; (b) 使用传统双拍成像得到的原子密度分布; (c) 白框中原子沿x方向积分后的一维密度分布图

    Fig. 4.  Comparison of images predicted by neural networks and actual captured results (atomic information included): (a) Stripe-free atomic density distribution map generated by neural networks; (b) atomic density distribution obtained using traditional double-shot imaging; (c) one-dimensional density distribution in the white square (integrated along x direction).

  • [1]

    Bhushan S, Chauhan V S, Easwaran R K 2018 Phys. Lett. A 382 3500Google Scholar

    [2]

    Jones M P, Marcassa L G, Shaffer J P 2017 J. Phys. B 50 060202Google Scholar

    [3]

    Lee W, Kim H, Ahn J 2017 Phys. Rev. A 95 053424Google Scholar

    [4]

    Sutherland R T, Robicheaux F 2016 Phys. Rev. A 94 013847Google Scholar

    [5]

    Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003Google Scholar

    [6]

    Childs A M, Preskill J, Renes J 2000 J. Mod. Opt. 47 155Google Scholar

    [7]

    Thomas P N, Smith B J, Datta A, Zhang L, Dorner U, Walmsley I A 2011 Phys. Rev. Lett. 107 113603Google Scholar

    [8]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [9]

    Ketterle W, Zwierlein M 2008 La Rivista del Nuovo Cimento 31 247

    [10]

    Woo S, Park J, Lee J Y, Kweon I S 2018 Proceedings of the European conference on computer vision (ECCV) Munich, Germany, September 8–14, 2018 p3

    [11]

    Hu J, Shen L, Sun G 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Salt Lake City, June 18–21, 2018 p7132

    [12]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [13]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar

    [14]

    Mehta P, Bukov M, Wang C H, Day A G, Richardson C, Fisher C K, Schwab D J 2019 Phys. Rep. 810 1Google Scholar

    [15]

    Nakamura I, Kanemura A, Nakaso T, Yamamoto R, Fukuhara T 2019 Opt. Express 27 20435Google Scholar

    [16]

    Barker A J, Style H, Luksch K, Sunami S, Garrick D, Hill F, Foot C J, Bentine E 2020 Mach. Learn.-Sci. Technol. 1 015007Google Scholar

    [17]

    Ness G, Vainbaum A, Shkedrov C, Florshaim Y, Sagi Y 2020 Phys. Rev. Appl. 14 014011Google Scholar

    [18]

    Shkedrov C, Florshaim Y, Ness G, Gandman A, Sagi Y 2018 Phys. Rev. Lett. 121 093402Google Scholar

    [19]

    Ness G, Shkedrov C, Florshaim Y, Sagi Y 2018 New J. Phys. 20 095002Google Scholar

    [20]

    Deng S, Shi Z Y, Diao P, Yu Q, Zhai H, Qi R, Wu H 2016 Science 353 371Google Scholar

    [21]

    Deng S, Chenu A, Diao P, Li F, Yu S, Coulamy I, Wu H 2018 Sci. Adv. 4 5909Google Scholar

    [22]

    Ronneberger O, Fischer P, Brox T 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention Munich, Germany, October 5–9, 2015 p234

    [23]

    Spall J C 2012 Handbook of Computational Statistics: Concepts and methods (Vol. 1) (Berlin: Springer) p173

    [24]

    He K, Zhang X, Ren S, Sun J 2015 Proceedings of the IEEE International Conference on Computer Vision Washington DC, December 7–13, 2015 p1026

    [25]

    Jacobs R A 1988 Neural Networks 1 295Google Scholar

    [26]

    Ioffe S, Szegedy C 2015 International Conference on Machine Learning Lille, France, July 6–11, 2015 p448

    [27]

    Taylor L, Nitschke G 2018 IEEE Symposium Series on Computational Intelligence (SSCI) Bangalore, India, November 18–21, 2018 p1542

  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望. 物理学报, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [3] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [4] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [5] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [6] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 物理学报, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [7] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [8] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [9] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [10] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [11] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [12] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [13] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [14] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [15] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [16] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [17] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析. 物理学报, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [18] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [19] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
计量
  • 文章访问数:  3094
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-04-18
  • 上网日期:  2023-05-13
  • 刊出日期:  2023-07-20

/

返回文章
返回