搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硅基砖砌型亚波长光栅的紧凑型模式转换器

陆梦佳 恽斌峰

引用本文:
Citation:

基于硅基砖砌型亚波长光栅的紧凑型模式转换器

陆梦佳, 恽斌峰

Silicon-based compact mode converter using bricked subwavelength grating

Lu Meng-Jia, Yun Bin-Feng
PDF
HTML
导出引用
  • 亚波长光栅可以等效为均匀介质, 具备可控的双折射、色散和各向异性等优势, 有利于设计高性能的光子器件. 尽管目前传统的亚波长光栅结构只需要单步刻蚀, 然而通常需要100 nm及以下的制造分辨率, 这对当前主流的晶圆级硅光子芯片制造技术来说比较困难. 亚波长光栅的各向异性可以通过引入砖砌型拓扑结构来进一步设计, 从而在设计中提供额外的自由度, 同时还可以降低制造分辨率需求(> 100 nm). 本文提出并研究了基于硅基砖砌型亚波长光栅的紧凑型TE0-TE1和TE0-TE2模式转换器, 其中砖砌型亚波长光栅的最小特征尺寸为145 nm. 实现了TE0模式到TE1模式和TE2模式的转换, 转换区域长度分别为9.39 µm和11.27 µm. 测试结果表明, 在68 nm (1512—1580 nm, 受限于激光器调谐范围和光栅耦合器)带宽内, 插损和串扰分别小于2.5 dB和–10 dB.
    Facing the increasing capacity requirements of on-chip optical interconnects, mode division multiplexing technology (MDM), which fully uses the different spatial eigenmodes at the same wavelength as independent channels to transmit optical signals, has attracted tremendous interest. Mode-order converter that can convert the fundamental mode into high-order mode is a key component in MDM system. However, it is still very challenging to achieve compact mode-order converters with high performances. Subwavelength grating (SWG) can be equivalent to homogenous material, which has the prominent advantages such as controlling over birefringence, dispersion and anisotropy, thus making photonic devices possess high performance. Wheras the conventional SWG only needs single-etch step, but the implementation of SWG structure usually requires a fabrication resolution on the order of 100 nm and below, which is difficult for current wafer-scale fabrication technology. The anisotropic response of SWG can be further engineered by introducing bricked topology structure, providing an additional degree of freedom in the design. Meanwhile, the requirement for fabrication resolution can also be reduced (> 100 nm). In this work, we experimentally demonstrate compact TE0-TE1 mode-order converter and TE0-TE2 mode-order converter by using a bricked subwavelength grating (BSWG) based on a silicon-on-insulator (SOI) with the BSWG having a minimum feature size of 145 nm. In the proposed mode-order converter, a quasi-TE0 mode is generated in the BSWG region, which can be regarded as an effective bridge between the two TE modes to be converted. Flexible mode conversion can be realized by only choosing appropriate structural parameters for specific mode transitions between input/output modes and the quasi-TE0 mode. By combining three-dimensional (3D) finite difference time domain (FDTD) and particle swarm optimization (PSO) method, TE0-TE1 mode-order converter and TE0-TE2 mode-order converter are optimally designed. They can convert TE0 mode into TE1 and TE2 mode with conversion length of 9.39 µm and 11.27 µm, respectively. The simulation results show that the insertion loss of < 1 dB and crosstalk of < –15 dB are achieved for both TE0-TE1 mode-order converter and TE0-TE2 mode-order converter, their corresponding working bandwidths being 128 nm (1511–1639 nm) and 126 nm (1527–1653 nm), respectively. The measurement results indicate that insertion loss and crosstalk are, respectively, less than 2.5 dB and –10 dB in a bandwidth of 68 nm (1512–1580 nm, limited by the laser tuning range and grating coupler).
      通信作者: 恽斌峰, ybf@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171118)资助的课题.
      Corresponding author: Yun Bin-Feng, ybf@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171118)
    [1]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, and Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [2]

    Li C L, Liu D J, and Dai D X 2019 Nanophotonics 8 227Google Scholar

    [3]

    Hsu Y, Chuang C Y, Wu X R, Chen G H, Hsu C W, Chang Y C, Chow C W, Chen J, Lai Y C, Yeh C H, Tsang H K 2018 IEEE Photonics Technol. L. 30 1052Google Scholar

    [4]

    Li H Q, Wang P J, Yang T J, Dai T, Wang G C, Li S Q, Chen W W, Yang J Y 2018 Opt. Laser Technol. 100 7Google Scholar

    [5]

    Pan T H and Tseng S Y 2015 Opt. Express 23 10405Google Scholar

    [6]

    Xu Y, Liu L P, Hu X, Dong Y, Zhang B, Ni Y 2022 Opt. Laser Technol. 151 108028Google Scholar

    [7]

    Ohana D, Levy U 2014 Opt. Express 22 27617Google Scholar

    [8]

    Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217Google Scholar

    [9]

    Xu H N, Shi Y C 2018 Laser Photonics Rev. 12 1700240Google Scholar

    [10]

    Chang W J, Lu L L Z, Ren X S, Lu L H, Cheng M F, Liu D M, Zhang M M 2018 IEEE Photonics J. 10 4501008Google Scholar

    [11]

    Garcia-Rodriguez D, Corral J L, Griol A, Llorente R 2017 Opt. Lett. 42 1221Google Scholar

    [12]

    Chen W W, Wang P J, Yang J Y 2014 IEEE Photonics Technol. L. 26 2043Google Scholar

    [13]

    Oner B B, Ustun K, Kurt H, Okyay A K, Turhan-Sayan G 2015 Opt. Express 23 3186Google Scholar

    [14]

    Chack D, Hassan S, Qasim M 2020 Appl. Opt. 59 3652Google Scholar

    [15]

    Liu L P, Xu Y, Wen L, Dong Y, Zhang B, Ni Y 2019 Appl. Optics 58 9075Google Scholar

    [16]

    Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R 2018 Nature 560 565Google Scholar

    [17]

    Luque-González J M, Sánchez-Postigo A, Hadij-ElHouati A, Ortega-Moñux A, Wangüemert-Pérez J G, Schmid J H, Cheben P, Molina-Fernández I, Halir R, 2021 Nanophotonics 10 2765Google Scholar

    [18]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784Google Scholar

    [19]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [20]

    Mia M B, Jaidye N, Ahmed I, Ahmed S Z, Kim S 2023 Opt. Express 31 4140Google Scholar

    [21]

    He Y, Zhang Y, Zhu Q M, An S, Cao R Y, Guo X H, Qiu C Y, Su Y K 2018 J. Lightwave Technol. 36 5746Google Scholar

    [22]

    González-Andrade D, Gonzalo Wanguemert-Perez J, Velasco A V, Ortega-Monux A, Herrero-Bermello A, Molina-Fernandez I, Halir R, Cheben P 2018 IEEE Photonics J. 10 2201010Google Scholar

    [23]

    González-Andrade D, Dias A, Wanguemert-Perez J G, Ortega-Monux A, Molina-Fernandez I, Halir R, Cheben P, Velasco A V 2020 Opt. Laser Technol. 129 106297Google Scholar

    [24]

    Cheng Z, Wang J, Yang Z Y, Zhu L N, Yang Y Q, Huang Y Q, Ren X M 2019 Opt. Express 27 34434Google Scholar

    [25]

    Wang H W, Zhang Y, He Y, Zhu Q M, Sun L, Su Y K 2019 Adv. Opt. Mater. 7 1801191Google Scholar

    [26]

    Sun L, Hu R, Zhang Z H, He Y, Su Y K 2021 IEEE J. Sel. Top. Quant. 27 8100308Google Scholar

    [27]

    Luque-González J M, Ortega-Moñux A, Halir R, Schmid J H, Cheben P, Molina-Fernández I, Wangüemert-Pérez J G 2021 Laser Photonics Rev. 15 2000478Google Scholar

    [28]

    Lu M J, Deng C Y, Sun Y, Wang D Y, Huang L, Liu P C, Lin D D, Cheng W, Hu G H, Lin T, Yun B F, Cui Y P 2022 Opt. Express 30 24655Google Scholar

    [29]

    Luque-González J M, Herrero-Bermello A, Ortega-Moux A, Sánchez-Rodríguez M, Velasco A V, Schmid J H, Cheben P, Molina-Fernández I, Halir R. 2020 Opt. Lett. 45 3398Google Scholar

    [30]

    Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q, Dai T G, Yu H, Yang J Y, Pavesi L 2021 J. Lightwave Technol. 39 6253Google Scholar

    [31]

    Mao S Q, Hu J Z, Zhang H Y, Jiang W F 2022 IEEE J. Quantum Elect. 58 8400106Google Scholar

  • 图 1  (a) 模式转换器方案的结构示意图; (b), (c) BSWG的部分放大图与SEM图

    Fig. 1.  (a) Schematic of the mode converter; (b), (c) part enlarged view and SEM image of the BSWG.

    图 2  器件优化过程流程图

    Fig. 2.  Flow chart of the optimization process.

    图 3  (a) TE0-TE1模式转换器的透射光谱; (b) TE0-TE2模式转换器的透射光谱

    Fig. 3.  (a) Transmission spectra for the TE0-TE1 mode converter; (b) transmission spectra for the TE0-TE2 mode converter.

    图 4  (a) 带有TE GC的直波导显微图; (b) TE GC的SEM图; (c) 不同光纤角度下TE耦合光栅的传输光谱

    Fig. 4.  (a) Microscope image of the reference straight waveguide with TE-type grating couplers; (b) SEM image of TE-type grating coupler; (c) transmission spectra of TE-type grating couplers under different fiber angles.

    图 5  (a), (c) TE0-TE1模式转换器的测试方案显微图; (b), (d) TE0-TE2模式转换器的测试方案显微图以及TE1-TE3模式复用器的SEM图

    Fig. 5.  (a), (c) Microscope images of the measure schemes for TE0-TE1 mode converter; (b), (d) microscope images of the measure schemes for TE0-TE2 mode converter and SEM images of TE1-TE3 multiplexer.

    图 6  TE0-TE1模式转换器(a)和TE0-TE2模式转换器(b)的SEM图及其放大的伪彩图

    Fig. 6.  SEM images and corresponding pseudocolor SEM images of TE0-TE1 mode converter (a) and TE0-TE2 mode converter (b).

    图 7  模式转换器的插损和串扰的测试链路图

    Fig. 7.  Experimental setup for measuring the insertion loss and crosstalk of mode converter.

    图 8  测试得到的器件传输谱 (a) TE0-TE1模式转换器; (b) TE0-TE2模式转换器

    Fig. 8.  Measured transmission spectra: (a) TE0-TE1 mode converter; (b) TE0-TE2 mode converter.

    表 1  模式转换器的优化设计参数

    Table 1.  Optimized design parameters for the mode converter.

    模式转换功能WMMI/μmWO/μmWT2/μmWD/μmLT1/μmLT2/μmLc/μm$ \overline {\Delta z} $
    TE0-TE12.100.90.22903.003.23.190.16
    TE0-TE22.671.40.3500.3733.214.04.060.14
    下载: 导出CSV

    表 2  模式(解)复用器的详细参数

    Table 2.  Detail parameters for the mode (de) multiplexer.

    模式(解)
    复用器
    总线波导
    的宽度/μm
    接入波导
    宽度/μm
    间隔/nm耦合长度/μm
    TE10.8350.420015.5
    TE21.290.40620021.3
    TE31.630.3820018
    下载: 导出CSV
  • [1]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, and Lipson M 2014 Nat. Commun. 5 3069Google Scholar

    [2]

    Li C L, Liu D J, and Dai D X 2019 Nanophotonics 8 227Google Scholar

    [3]

    Hsu Y, Chuang C Y, Wu X R, Chen G H, Hsu C W, Chang Y C, Chow C W, Chen J, Lai Y C, Yeh C H, Tsang H K 2018 IEEE Photonics Technol. L. 30 1052Google Scholar

    [4]

    Li H Q, Wang P J, Yang T J, Dai T, Wang G C, Li S Q, Chen W W, Yang J Y 2018 Opt. Laser Technol. 100 7Google Scholar

    [5]

    Pan T H and Tseng S Y 2015 Opt. Express 23 10405Google Scholar

    [6]

    Xu Y, Liu L P, Hu X, Dong Y, Zhang B, Ni Y 2022 Opt. Laser Technol. 151 108028Google Scholar

    [7]

    Ohana D, Levy U 2014 Opt. Express 22 27617Google Scholar

    [8]

    Gabrielli L H, Liu D, Johnson S G, Lipson M 2012 Nat. Commun. 3 1217Google Scholar

    [9]

    Xu H N, Shi Y C 2018 Laser Photonics Rev. 12 1700240Google Scholar

    [10]

    Chang W J, Lu L L Z, Ren X S, Lu L H, Cheng M F, Liu D M, Zhang M M 2018 IEEE Photonics J. 10 4501008Google Scholar

    [11]

    Garcia-Rodriguez D, Corral J L, Griol A, Llorente R 2017 Opt. Lett. 42 1221Google Scholar

    [12]

    Chen W W, Wang P J, Yang J Y 2014 IEEE Photonics Technol. L. 26 2043Google Scholar

    [13]

    Oner B B, Ustun K, Kurt H, Okyay A K, Turhan-Sayan G 2015 Opt. Express 23 3186Google Scholar

    [14]

    Chack D, Hassan S, Qasim M 2020 Appl. Opt. 59 3652Google Scholar

    [15]

    Liu L P, Xu Y, Wen L, Dong Y, Zhang B, Ni Y 2019 Appl. Optics 58 9075Google Scholar

    [16]

    Cheben P, Halir R, Schmid J H, Atwater H A, Smith D R 2018 Nature 560 565Google Scholar

    [17]

    Luque-González J M, Sánchez-Postigo A, Hadij-ElHouati A, Ortega-Moñux A, Wangüemert-Pérez J G, Schmid J H, Cheben P, Molina-Fernández I, Halir R, 2021 Nanophotonics 10 2765Google Scholar

    [18]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784Google Scholar

    [19]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [20]

    Mia M B, Jaidye N, Ahmed I, Ahmed S Z, Kim S 2023 Opt. Express 31 4140Google Scholar

    [21]

    He Y, Zhang Y, Zhu Q M, An S, Cao R Y, Guo X H, Qiu C Y, Su Y K 2018 J. Lightwave Technol. 36 5746Google Scholar

    [22]

    González-Andrade D, Gonzalo Wanguemert-Perez J, Velasco A V, Ortega-Monux A, Herrero-Bermello A, Molina-Fernandez I, Halir R, Cheben P 2018 IEEE Photonics J. 10 2201010Google Scholar

    [23]

    González-Andrade D, Dias A, Wanguemert-Perez J G, Ortega-Monux A, Molina-Fernandez I, Halir R, Cheben P, Velasco A V 2020 Opt. Laser Technol. 129 106297Google Scholar

    [24]

    Cheng Z, Wang J, Yang Z Y, Zhu L N, Yang Y Q, Huang Y Q, Ren X M 2019 Opt. Express 27 34434Google Scholar

    [25]

    Wang H W, Zhang Y, He Y, Zhu Q M, Sun L, Su Y K 2019 Adv. Opt. Mater. 7 1801191Google Scholar

    [26]

    Sun L, Hu R, Zhang Z H, He Y, Su Y K 2021 IEEE J. Sel. Top. Quant. 27 8100308Google Scholar

    [27]

    Luque-González J M, Ortega-Moñux A, Halir R, Schmid J H, Cheben P, Molina-Fernández I, Wangüemert-Pérez J G 2021 Laser Photonics Rev. 15 2000478Google Scholar

    [28]

    Lu M J, Deng C Y, Sun Y, Wang D Y, Huang L, Liu P C, Lin D D, Cheng W, Hu G H, Lin T, Yun B F, Cui Y P 2022 Opt. Express 30 24655Google Scholar

    [29]

    Luque-González J M, Herrero-Bermello A, Ortega-Moux A, Sánchez-Rodríguez M, Velasco A V, Schmid J H, Cheben P, Molina-Fernández I, Halir R. 2020 Opt. Lett. 45 3398Google Scholar

    [30]

    Yao R K, Li H X, Zhang B H, Chen W W, Wang P J, Dai S X, Liu Y X, Li J, Li Y, Fu Q, Dai T G, Yu H, Yang J Y, Pavesi L 2021 J. Lightwave Technol. 39 6253Google Scholar

    [31]

    Mao S Q, Hu J Z, Zhang H Y, Jiang W F 2022 IEEE J. Quantum Elect. 58 8400106Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [2] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强. 物理学报, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [3] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [4] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性. 物理学报, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [5] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [6] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [7] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [8] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [9] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [10] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [11] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [12] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [13] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [14] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 物理学报, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [15] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究. 物理学报, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [16] 孙 旭, 赵 青, 李宏福. 宽带非均匀半径渐变TE0n-TE0(n+1)模式转换器的设计研究. 物理学报, 2008, 57(4): 2130-2135. doi: 10.7498/aps.57.2130
    [17] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [18] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [20] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
计量
  • 文章访问数:  2675
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-05-25
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回