搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压下预混甲烷和空气微波等离子体放电燃烧的实验研究

曹树利 李寿哲 牛裕龙 李容毅 朱海龙

引用本文:
Citation:

常压下预混甲烷和空气微波等离子体放电燃烧的实验研究

曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙

Experimental study on microwave plasma discharge and combustion of premixed methane and air at atmospheric pressure

Cao Shu-Li, Li Shou-Zhe, Niu Yu-Long, Li Rong-Yi, Zhu Hai-Long
PDF
HTML
导出引用
  • 开展了预混甲烷(CH4)和空气的微波等离子体放电燃烧实验, 研究火焰余辉形态、光谱分布和温度特性随着微波功率、燃空当量比和轴向观测位置的变化规律. 实验发现预混CH4/Air的稀薄燃烧极限当量比Φ = 0.4; 在微波等离子体放电时, 当Φ < 0.4, 以放电诱导的燃烧过程为主要特征, 而当Φ ≥ 0.4时, 等离子体放电燃烧的中心区会明显收缩并逐渐出现丝状放电, 这里低约化场强区的燃烧和高约化场强区的放电燃烧相互影响. 利用发射光谱仪测得预混CH4/Air微波等离子体放电燃烧光谱的特征谱带, OH(A-X), NH(A-X)和CN(B-X), 沿着轴向空间位置的强度分布和随着当量比的变化, 发现了轴向上近余辉的等离子体放电燃烧区和远余辉的燃烧区, 并通过分析CN(B-X)振转谱带的强度分布, 计算得到振动与转动温度, 发现以Φ = 0.4为分界点形成两种不同的随当量比变化规律. 最后, 根据CH4扩散燃烧火焰、CH4/N2混合气体等离子体放电以及CH4/Air混合气体等离子体放电燃烧的发射光谱对比分析讨论了等离子体增强燃烧过程中的反应路径和机理.
    In this work, we carry out the experiments on an atmospheric-pressure premixed methane and air microwave plasma discharge combustion with premixed methane and air to study the morphology, the spatial distribution of species, and the temperature characteristics for various microwave power values and methane-to-air equivalent ratios (Φ) at a series of measurement positions. The experimental results show that the equivalent ratio of 0.4 corresponds to the limit value for lean-combustion of premixed methane and air. And for Φ < 0.4, the discharge flame is mainly characterized by the combustion induced by premixed methane and air microwave plasma discharge, while, for Φ ≥ 0.4, the discharge flame is constricted into filaments radially, and the natural combustion occurs in the region of low reduced electric strength and the combustion induced by plasma discharge in the region of high reduced electric strength, which affect each other. The variations of emission intensity of OH (A-X) band, NH (A-X) band and CN (B-X) band with the measuring position and the equivalent ratio Φ are measured by using optical emission spectrometry (OES). It is found that the discharge combustion occurs in near afterglow and the combustion in far afterglow. And the vibrational temperature and the rotational temperature of the plasma discharge combustion are determined by analyzing the emission bands of CN(B-X) and the variations of both vibrational and rotational temperatures with equivalent ratio, exhibiting very different varying tendencies for cases of Φ < 0.4 and Φ ≥ 0.4, respectively. Finally, the reaction pathway and mechanism are discussed on the basis of the comparative analyses of the emission spectra of CH4 diffusion combustion flame, premixed methane and nitrogen microwave plasma discharge, and premixed methane and air microwave plasma discharge combustion.
      通信作者: 李寿哲, lisz@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975003)和中央高校基本科研业务费资助(批准号: DUT22LAB105)资助的课题.
      Corresponding author: Li Shou-Zhe, lisz@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975003) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT22LAB105).
    [1]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [2]

    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001Google Scholar

    [3]

    Denissenko P, Bulat M P, Esakov I I, Grachev L P, Volkov K N, Volobuev I A, Upyrev V, Bulat P V 2019 Combust. Flame 202 417Google Scholar

    [4]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. Sci. 48 21Google Scholar

    [5]

    Sun W T, Uddi M, Won S H, Ombrello T, Carter C, Ju Y G 2012 Combust. Flame 159 221Google Scholar

    [6]

    Tang Y, Sun J G, Shi B L, Li S Q, Yao Q 2021 Combust. Flame 231 111483Google Scholar

    [7]

    Kim W, Mungal M G, Cappelli M A 2010 Combust. Flame 157 374Google Scholar

    [8]

    Sun W T, Uddi M, Ombrello T, Won S H, Carter C, Ju Y G 2011 Proc. Combust. Inst. 33 3211Google Scholar

    [9]

    Starikovskiy A, Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61Google Scholar

    [10]

    Mu H B, Yu L, Li P, Tang C L, Wang J H, Zhang G J 2015 Plasma Sci. Technol. 17 1019Google Scholar

    [11]

    Ono R, Ogura K, Mogi T 2017 J. Phys. D:Appl. Phys. 50 365201Google Scholar

    [12]

    Redondo A B, Troussard E, van Bokhoven J A 2012 Fuel Process. Technol. 104 265Google Scholar

    [13]

    Cruccolini V, Discepoli G, Cimarello A, Battistoni M, Mariani F, Grimaldi C N, Dal Re M 2020 Fuel 259 116290Google Scholar

    [14]

    Chintala N, Bao A, Lou G F, Adamovich I V 2006 Combust. Flame 144 744Google Scholar

    [15]

    Wolk B, DeFilippo A, Chen J Y, Dibble R, Nishiyama A, Ikeda Y 2013 Combust. Flame 160 1225Google Scholar

    [16]

    Ehn A, Petersson P, Zhu J J, Li Z S, Aldén M, Nilsson E J K, Larfeldt J, Larsson A, Hurtig T, Zettervall N, Fureby C 2017 Proc. Combust. Inst. 36 4121Google Scholar

    [17]

    Zhang X L, Niu Y L, Li S Z, Cao S L, Ji C J 2021 Phys. Plasmas 28 123511Google Scholar

    [18]

    Li S Z, Niu Y L, Cao S L, Zhang J, Zhang J L, Li X C 2022 J. Phys. D: Appl. Phys. 55 235203Google Scholar

    [19]

    Mao X Q, Chen Q, Guo C H 2019 Energy Convers. Manage. 200 112018Google Scholar

    [20]

    Kang H, Choi S, Jung C M, Kim K T, Song Y H, Lee D H 2020 Int. J. Hydrogen Energy 45 30009Google Scholar

    [21]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [22]

    Hong Y C, Uhm H S 2006 Phys. Plasmas 13 113501Google Scholar

    [23]

    Wang C J, Wu W 2013 J. Phys. D: Appl. Phys. 46 464008Google Scholar

    [24]

    Wu W, Fuh C A, Wang C J 2015 Combust. Sci. Technol. 187 999Google Scholar

    [25]

    Fuh C A, Wang C J 2020 IEEE Trans. Plasma Sci. 48 2646Google Scholar

    [26]

    Hemawan K W, Wichman I S, Lee T, Grotjohn T A, Asmussen J 2009 Rev. Sci. Instrum. 80 053507Google Scholar

    [27]

    Dedic C E, Michael J B 2021 Combust. Flame 227 322Google Scholar

    [28]

    Wu W, Fuh C A, Wang C J 2015 IEEE Trans. Plasma Sci. 43 3986Google Scholar

    [29]

    Wang Z, Huang J, Wang Q, Hou L Y, Zhang G X 2015 Combust. Flame 162 2561Google Scholar

    [30]

    Stockman E S, Zaidi S H, Miles R B, Carter C D, Ryan M D 2009 Combust. Flame 156 1453Google Scholar

    [31]

    Hammack S, Lee T, Carter C 2012 IEEE Trans. Plasma Sci. 40 3139Google Scholar

    [32]

    Michael J B, Chng T L, Miles R B 2013 Combust. Flame 160 796Google Scholar

    [33]

    Li Y H, Chen C T, Fang H K 2019 Energy 188 116007Google Scholar

    [34]

    Hwang J, Bae C, Park J, Choe W, Cha J, Woo S 2016 Combust. Flame 167 86Google Scholar

    [35]

    Ward M A V 1980 J. Microwave Power 15 193Google Scholar

    [36]

    Chen B S, Garner A L, Bane S P M 2019 Combust. Flame 207 250Google Scholar

    [37]

    Zhang X H, Wang Z W, Wu H M, Zhou D, Huang S, Cheng X B, Chen J Y 2020 Combust. Flame 222 111Google Scholar

    [38]

    Kammermann T, Kreutner W, Trottmann M, Merotto L, Soltic P, Bleiner D 2018 Spectrochim. Acta Part B 148 152Google Scholar

    [39]

    Kojima J, Ikeda Y, Nakajima T 2005 Combust. Flame 140 34Google Scholar

    [40]

    Fuh C A, Clark S M, Wu W, Wang C J 2016 J. Appl. Phys. 120 163303Google Scholar

    [41]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [42]

    Zhu X R, Khateeb A A, Roberts W L, Guiberti T F 2021 Combust. Flame 231 111508Google Scholar

    [43]

    Dilecce G, Ambrico P F, Scarduelli G, Tosi P, De Benedictis S 2009 Plasma Sources Sci. Technol. 18 015010Google Scholar

    [44]

    Hu W, Tang J Y, Wu J D, Sun J, Shen Y Q, Xu X F, Xu N 2008 Phys. Plasmas 15 073502Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  预混甲烷和空气的微波放电燃烧形态(微波功率为1200 W)的(a) 侧视图和 (b) 俯视图, 以及(c)自然燃烧火焰形态(NC)俯视图

    Fig. 2.  (a) Side view and (b) top view of premixed methane and air microwave plasma discharge and combustion at microwave power of 1200 W and (c) top view of natural combustion flame.

    图 3  不同当量比下预混甲烷和空气自然燃烧 (NC) 和在微波等离子体放电 (微波功率为1200 W) 增强燃烧的红外光谱图

    Fig. 3.  Infrared spectra of natural combustion of premixed CH4 and air and microwave plasma discharge enhanced combustion (microwave power of 1200 W) at a series of equivalence ratios.

    图 4  在总气流量为18 SLM、微波功率为1200 W时, 当量比分别为 (a) Φ = 0.3和 (b) Φ = 0.6下的沿x轴空间分辨发射光谱图

    Fig. 4.  Spatial distribution of emission spectra at a series of positions along x axis at the equivalence ratio of (a) 0.3 and (b) 0.6, respectively, with the fixed total gas flow rate of 18 SLM and microwave power of 1200 W.

    图 5  在总气流量为18 SLM、微波功率为1200 W时, CN, NH和OH自由基发射强度随轴向距离的变化曲线

    Fig. 5.  Plot of emission intensities of CN, NH and OH bands versus the axial distance at a total gas flow rate of 18 SLM and microwave power of 1200 W.

    图 6  在总气流量为18 SLM、微波功率为1400 W时, 不同当量比下预混甲烷和空气微波等离子体放电燃烧的发射光谱

    Fig. 6.  Emission spectra of premixed CH4 and air microwave plasma discharge and combustion at a series of equivalence ratios, a total gas flow rate of 18 SLM and microwave power of 1400 W.

    图 7  在微波功率为1400 W时, (a) OH(A-X)、NH(A-X)和CN(B-X)谱带的发射强度以及 (b) CN/NH和NH/OH自由基对的发射强度比值随当量比的变化

    Fig. 7.  Variations of emission intensity of (a) OH(A-X), NH(A-X) and CN(B-X) bands and (b) intensity ratio of radical pairs of CN/NH and NH/OH versus the equivalence ratios at the microwave power of 1400 W.

    图 8  (a) 计算CN谱带的转动温度所选用的P支谱线; (b) 对CN谱带中所选转动谱线强度分布的玻尔兹曼拟合

    Fig. 8.  (a) Measured spectrum of P-branch of CN band and candidate spectral lines for calculation of rotational temperature; (b) Boltzmann fitting of intensity of selected lines in CN band.

    图 9  在总气流量为18 SLM条件下, (a)微波功率分别为1200 W, 1400 W和1600 W时, 由CN谱带确定的转动温度随当量比的变化曲线; (b)当量比分别为0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7以及0.8时, 转动温度随微波功率的变化曲线

    Fig. 9.  Plot of the rotational temperature determined from CN bands versus (a) the equivalent ratio at a series of microwave power and (b) microwave power at various equivalent ratios, respectively, at a fixed total gas flow rate of 18 SLM.

    图 10  (a) 计算CN振动温度所选用的带组带头; (b) 对CN谱带中所选带组的带头强度分布的玻尔兹曼拟合

    Fig. 10.  (a) Measured spectrum of CN bands and candidate bandheads for calculation of vibrational temperature; (b) Boltzmann fitting of intensity of selected bandheads in CN band.

    图 11  在总气流量为18 SLM条件下, (a)微波功率分别为1200 W, 1400 W和1600 W时, 由CN谱带确定的振动温度随当量比的变化曲线; (b)当量比分别为0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7以及0.8时, 振动温度随微波功率的变化曲线

    Fig. 11.  Plot of the vibrational temperature determined from CN bands versus (a) the equivalent ratio at a series of microwave power and (b) microwave power at various equivalent ratios, respectively, at a fixed total gas flow rate of 18 SLM.

    图 12  (a) CH4在空气中扩散燃烧时的发射光谱图; (b) CH4/N2按照0.3∶17.8比例预混微波等离子体放电发射光谱图(微波功率1200 W); (c) CH4/Air按照0.7∶17.3比例预混时微波等离子体放电燃烧的发射光谱图(微波功率1200 W)

    Fig. 12.  Emission spectra of (a) CH4 diffusion combustion in the ambient air without microwave plasma discharge; (b) microwave plasma discharge in CH4/N2 with mixing ratio of 0.3∶17.8 (microwave power of 1200 W); (c) microwave plasma discharge and combustion in CH4/Air with mixing ratio of 0.7∶17.3, respectively (microwave power of 1200 W).

  • [1]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [2]

    Starikovskaia S M 2014 J. Phys. D: Appl. Phys. 47 353001Google Scholar

    [3]

    Denissenko P, Bulat M P, Esakov I I, Grachev L P, Volkov K N, Volobuev I A, Upyrev V, Bulat P V 2019 Combust. Flame 202 417Google Scholar

    [4]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. Sci. 48 21Google Scholar

    [5]

    Sun W T, Uddi M, Won S H, Ombrello T, Carter C, Ju Y G 2012 Combust. Flame 159 221Google Scholar

    [6]

    Tang Y, Sun J G, Shi B L, Li S Q, Yao Q 2021 Combust. Flame 231 111483Google Scholar

    [7]

    Kim W, Mungal M G, Cappelli M A 2010 Combust. Flame 157 374Google Scholar

    [8]

    Sun W T, Uddi M, Ombrello T, Won S H, Carter C, Ju Y G 2011 Proc. Combust. Inst. 33 3211Google Scholar

    [9]

    Starikovskiy A, Aleksandrov N 2013 Prog. Energy Combust. Sci. 39 61Google Scholar

    [10]

    Mu H B, Yu L, Li P, Tang C L, Wang J H, Zhang G J 2015 Plasma Sci. Technol. 17 1019Google Scholar

    [11]

    Ono R, Ogura K, Mogi T 2017 J. Phys. D:Appl. Phys. 50 365201Google Scholar

    [12]

    Redondo A B, Troussard E, van Bokhoven J A 2012 Fuel Process. Technol. 104 265Google Scholar

    [13]

    Cruccolini V, Discepoli G, Cimarello A, Battistoni M, Mariani F, Grimaldi C N, Dal Re M 2020 Fuel 259 116290Google Scholar

    [14]

    Chintala N, Bao A, Lou G F, Adamovich I V 2006 Combust. Flame 144 744Google Scholar

    [15]

    Wolk B, DeFilippo A, Chen J Y, Dibble R, Nishiyama A, Ikeda Y 2013 Combust. Flame 160 1225Google Scholar

    [16]

    Ehn A, Petersson P, Zhu J J, Li Z S, Aldén M, Nilsson E J K, Larfeldt J, Larsson A, Hurtig T, Zettervall N, Fureby C 2017 Proc. Combust. Inst. 36 4121Google Scholar

    [17]

    Zhang X L, Niu Y L, Li S Z, Cao S L, Ji C J 2021 Phys. Plasmas 28 123511Google Scholar

    [18]

    Li S Z, Niu Y L, Cao S L, Zhang J, Zhang J L, Li X C 2022 J. Phys. D: Appl. Phys. 55 235203Google Scholar

    [19]

    Mao X Q, Chen Q, Guo C H 2019 Energy Convers. Manage. 200 112018Google Scholar

    [20]

    Kang H, Choi S, Jung C M, Kim K T, Song Y H, Lee D H 2020 Int. J. Hydrogen Energy 45 30009Google Scholar

    [21]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [22]

    Hong Y C, Uhm H S 2006 Phys. Plasmas 13 113501Google Scholar

    [23]

    Wang C J, Wu W 2013 J. Phys. D: Appl. Phys. 46 464008Google Scholar

    [24]

    Wu W, Fuh C A, Wang C J 2015 Combust. Sci. Technol. 187 999Google Scholar

    [25]

    Fuh C A, Wang C J 2020 IEEE Trans. Plasma Sci. 48 2646Google Scholar

    [26]

    Hemawan K W, Wichman I S, Lee T, Grotjohn T A, Asmussen J 2009 Rev. Sci. Instrum. 80 053507Google Scholar

    [27]

    Dedic C E, Michael J B 2021 Combust. Flame 227 322Google Scholar

    [28]

    Wu W, Fuh C A, Wang C J 2015 IEEE Trans. Plasma Sci. 43 3986Google Scholar

    [29]

    Wang Z, Huang J, Wang Q, Hou L Y, Zhang G X 2015 Combust. Flame 162 2561Google Scholar

    [30]

    Stockman E S, Zaidi S H, Miles R B, Carter C D, Ryan M D 2009 Combust. Flame 156 1453Google Scholar

    [31]

    Hammack S, Lee T, Carter C 2012 IEEE Trans. Plasma Sci. 40 3139Google Scholar

    [32]

    Michael J B, Chng T L, Miles R B 2013 Combust. Flame 160 796Google Scholar

    [33]

    Li Y H, Chen C T, Fang H K 2019 Energy 188 116007Google Scholar

    [34]

    Hwang J, Bae C, Park J, Choe W, Cha J, Woo S 2016 Combust. Flame 167 86Google Scholar

    [35]

    Ward M A V 1980 J. Microwave Power 15 193Google Scholar

    [36]

    Chen B S, Garner A L, Bane S P M 2019 Combust. Flame 207 250Google Scholar

    [37]

    Zhang X H, Wang Z W, Wu H M, Zhou D, Huang S, Cheng X B, Chen J Y 2020 Combust. Flame 222 111Google Scholar

    [38]

    Kammermann T, Kreutner W, Trottmann M, Merotto L, Soltic P, Bleiner D 2018 Spectrochim. Acta Part B 148 152Google Scholar

    [39]

    Kojima J, Ikeda Y, Nakajima T 2005 Combust. Flame 140 34Google Scholar

    [40]

    Fuh C A, Clark S M, Wu W, Wang C J 2016 J. Appl. Phys. 120 163303Google Scholar

    [41]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [42]

    Zhu X R, Khateeb A A, Roberts W L, Guiberti T F 2021 Combust. Flame 231 111508Google Scholar

    [43]

    Dilecce G, Ambrico P F, Scarduelli G, Tosi P, De Benedictis S 2009 Plasma Sources Sci. Technol. 18 015010Google Scholar

    [44]

    Hu W, Tang J Y, Wu J D, Sun J, Shen Y Q, Xu X F, Xu N 2008 Phys. Plasmas 15 073502Google Scholar

  • [1] 朱彦熔, 常正实. 脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响. 物理学报, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [2] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [3] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [4] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] 汪天龙, 邱清泉, 靖立伟, 张小波. 圆形复合式磁控溅射阴极设计及其放电特性模拟研究. 物理学报, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [7] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [8] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [9] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [10] 俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖. 针-板DBD微流注与微辉光交替生成的机理研究. 物理学报, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [11] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [12] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [13] 潜力, 王昱权, 刘亮, 范守善. 碳纳米管在大气压环境中的场致发射特性. 物理学报, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [14] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [15] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [16] 孙 健, 白敏冬, 毛程奇, 白希尧. 单极性带电粒子浓度测试方法的研究. 物理学报, 2007, 56(7): 3972-3976. doi: 10.7498/aps.56.3972
    [17] 郑 彬, 施春华. 平流层中部垂直运动年循环异常的模拟研究. 物理学报, 2007, 56(7): 4277-4280. doi: 10.7498/aps.56.4277
    [18] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [19] 裘 亮, 孟月东, 任兆杏, 钟少锋. 一种新型微空阴极结构的大气压射频冷等离子体源. 物理学报, 2006, 55(11): 5872-5877. doi: 10.7498/aps.55.5872
    [20] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究. 物理学报, 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
计量
  • 文章访问数:  4052
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-05-26
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回