搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于电推进的碘工质电子回旋共振等离子体源

李鑫 曾明 刘辉 宁中喜 于达仁

引用本文:
Citation:

应用于电推进的碘工质电子回旋共振等离子体源

李鑫, 曾明, 刘辉, 宁中喜, 于达仁

Iodine electron cyclotron resonance plasma source for electric propulsion

Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren
PDF
HTML
导出引用
  • 电子回旋共振(electron cyclotron resonance, ECR)源具有无需内电极、低气压电离、等离子体密度较高和结构紧凑等优点, 适用于小功率电推进. 因此, 研究小功率碘工质ECR等离子体源具有重要意义. 本文首先设计了一套耐腐蚀且可以均衡稳定输出碘蒸汽的储供系统; 然后完成了耐碘腐蚀ECR推力器设计, 利用耐腐蚀的同轴谐振腔结构将微波馈送到推力器, 并将通道磁场变为会切型磁场以产生更多ECR层; 最终联合点火实验成功, 成为国际上首个可以用于电推进的ECR电离碘工质等离子体源. 分析实验和静磁场、微波电场分布发现, 小功率、低流量下的不稳定等离子体羽流闪烁由寻常波电子等离子体共振加热和非寻常波ECR加热模式之间的转化引起. 高流量下电离率下降是由电子损失、壁面损失和碘工质电负性导致. 并依据此原理提出了改进方案. 放电后等离子体源没有明显损伤, 说明具备长寿命潜力. 此项工作初步证实了小功率碘工质ECR电推进方案可行.
    With the rapid development of commercial space in recent years, the low-power and low-cost propulsion systems are needed more and more urgently. Compared with conventional chemical propulsion, electric propulsion has a higher specific impulse. Compared with the conventional xenon propellant, iodine propellant that does not require high pressure storage, is cheap and close to the relative atomic mass and ionization energy of xenon. Electron cyclotron resonance source has the advantages of no internal electrode, low pressure ionization, high plasma density and compact structure, which is suitable for low power electric propulsion. Therefore, the study of low power iodine propellant electron cyclotron resonance plasma source is of great significance. In this study, a set of corrosion-resistant feed system with balanced and stable output of iodine vapor is designed. Then the iodine-corrosion-resistant electron cyclotron resonance thruster is designed completely. A corrosion-resistant coaxial cavity structure is used to feed the microwave to the thruster, and the channel magnetic field is changed into a cusped field to generate more electron cyclotron resonance (ECR) layers. Finally, the combined ignition experiment is successfully conducted, showing the first plasma source using electron cyclotron resonance to ionize iodine propellant that can be used for electric propulsion in the world. The analyses of experiments, static magnetic field, microwave electric field distribution show that the unstable plasma plume scintillation at low power and low flow is caused by the conversion between ordinary wave electron plasmon resonance heating mode and extraordinary wave electron cyclotron resonance heating mode. The decrease of ionization rate at a high flow rate is caused by electron loss, wall loss and electronegativity of iodine propellant. Based on this principle, an improvement scheme is proposed. The plasma source has no obvious damage after discharge, which indicates that it has the potential of long life. This work preliminarily proves that the low power electron cyclotron resonance electric propulsion scheme of low power iodine propellant is feasible.
      通信作者: 刘辉, huiliu@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52376023)资助的课题.
      Corresponding author: Liu Hui, huiliu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52376023).
    [1]

    Heidt H, Puig-Suari J, Moore A S, Nakasuka S, Twiggs R J 2000 Proceedings of the 14th Annual/USU Conference on Small Satellites Logan, August 21–24, 2000 SSC00-V-5

    [2]

    许亮亮, 蔡明辉, 杨涛, 韩建伟 2020 物理学报 69 165203Google Scholar

    Xu L L, Cai M H, Yang T, Han J W 2020 Acta Phys. Sin. 69 165203Google Scholar

    [3]

    Poghosyan A, Golkar A 2017 Prog. Aero. Sci. 88 59Google Scholar

    [4]

    Tsay M, Model J, Barcroft C, Frongillo J, Zwahlen J, Feng C 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, USA, October 8–12, 2017 IEPC-2017-264

    [5]

    Hillier A, Branam R, Huffman R, Szabo J, Paintal S 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 AIAA-2011-524

    [6]

    Dankanich J W, Calvert D, Kamhawi H, Hickman T, Szabo J, Byrne L 2015 Proceedings of the 34th International Electric Propulsion Conference Kobe-Hyogo, July 4–10, 2015 IEPC-2015-303

    [7]

    Polzin K A, Seixal J F, Mauro S L, Burt A O, Martinez A, Martin A K 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, Georgia, October 8–12, 2017 IEPC-2017-11

    [8]

    Szabo J, Robin M, Paintal S, Pote B, Hruby V, Freeman C 2013 Proceedings of the 33th International Electric Propulsion Conference Washington, D. C., October 6–10, 2013 IEPC-2013-311

    [9]

    Tsay M, Frongillo J, Hohman K 2015 Proceedings of the 34th International Electric Propulsion Conference Hyogo-Kobe, July 4–10, 2015 IEPC-2015-273

    [10]

    Rafalskyi D, Martínez J M, Habl L, Rossi E Z, Proynov P, Boré A, Baret T, Poyet A, Lafleur T, Dudin S, Aanesland A 2021 Nature 599 411Google Scholar

    [11]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Souhair N, Duzzi M, Barato F, Cappellini L, Barbato A, Paulon D, Selmo A, Bellomo N, Gloder A, Toson E, Minute M, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-417

    [12]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Cappellini L, Barato F, Bellomo N, Gloder A, Toson E, Minute M, Vallisari D, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-419

    [13]

    Bellomo N, Magarotto M, Manente M, Trezzolani F, Mantellato R, Cappellini L, Paulon D, Selmo A, Scalzi D, Minute M, Duzzi M, Barbato A, Schiavon A, Fede S D, Souhair N, Carlo P D, Barato F, Milza F, Toson E, Pavarin D 2022 CEAS Space J. 14 79Google Scholar

    [14]

    Szabo1 J, Pote B, Paintal S, Robin M, Hillier A, Branam R D, Huffman R E 2012 J. Propul. Power 28 848Google Scholar

    [15]

    Dankanich J W, Szabo J, Pote B, Oleson S, Kamhawi H 2014 Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, July 28–30, 2014 AIAA-2014-3905

    [16]

    Tsay M, Frongillo J, Hohman K, Malphrus B K 2015 Proceedings of the 29th AIAA/USU Conference on Small Satellites Logan, August 9, 2015 SSC15-XI-1

    [17]

    Yang J H, Jia S X, Zhang Z H, Zhang X H, Jin T, Li L, Cai Y, Cai J 2020 Plasma Sci. Technol. 22 094006Google Scholar

    [18]

    申英杰 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Shen Y J 2010 M. S. Thesis (Harbin: Harbin Institute of Technology

    [19]

    Shuaibov A K, Grabovaya I A, Gomoki Z T, Kalyuzhnaya A G, Shchedrin A I 2009 Tech. Phys. 54 1819Google Scholar

    [20]

    Matsutani A, Ohtsuki H, Koyama F 2005 Jpn. J. Appl. Phys. 44 L576Google Scholar

    [21]

    Fehsenfeld F C, Evanson K M, Broida H P 1965 Rev. Sci. Instrum. 36 294Google Scholar

    [22]

    Hawley M C, Asmussen J, Filpus J W, Whitehair S, Hoekstra C, Morin T J, Chapman R 1989 J. Propul. Power 5 703Google Scholar

    [23]

    Agnihotri A N, Kelkar A H, Kasthurirangan S, Thulasiram K V, Desai C A, Fernandez W A, Tribedi L C 2011 Phys. Scr. T144 014038Google Scholar

    [24]

    Biri S, Rácz R, Pálinkás J 2012 Rev. Sci. Instrum. 83 02A341Google Scholar

    [25]

    Hargus W A, Lubkeman J S, Remy K E, Gonzales A E 2012 Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Atlanta, Georgia, July 30–August 1, 2012 AIAA-2012-4316

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    Koizumi H, Kuninaka H 2011 Proceedings of the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 IEPC-2011-297

    [28]

    Désangles V, Packan D, Jarrige J, Peterschmitt S, Dietz P, Scharmann S, Holste K, Klar P 2022 Proceedings of the 37th International Electric Propulsion Conference Cambridge, June 19–23, 2022 IEPC-2022-513

    [29]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [30]

    Zeng M, Liu H, Chen Z Q, Huang H Y, Yu D R 2021 Vacuum 192 110486Google Scholar

  • 图 1  微波等离子体源原理图[2528] (a)埃文森微波谐振腔; (b)常压微波等离子体炬; (c) μ1微型离子束源; (d) ECRA推进器

    Fig. 1.  Schematic diagram of the microwave plasma source[2528]: (a) Evanson microwave resonant cavity; (b) atmospheric pressure microwave plasma torches; (c) μ1 miniature ion beam source; (d) ECRA thruster.

    图 2  ECR等离子体源实物图(a)及原理图(b)

    Fig. 2.  Photo of microwave plasma source (a) and schematic diagram (b).

    图 3  等离子体源磁感应强度分布

    Fig. 3.  Magnetic induction intensity distribution of plasma source.

    图 4  ECR层中微波电场垂直分量(E)的分布图. 图中白线表示磁场线, 黄色箭头表示微波电场线

    Fig. 4.  Distribution diagram of microwave electric field vertical component (E) in ECR layer. The white lines represent magnetic field lines and the yellow arrows represent microwave electric field lines.

    图 5  碘等离子体源系统示意图

    Fig. 5.  Diagram of iodine plasma source system.

    图 6  碘工质贮供系统实物图(a)和流量标定示意图(b)

    Fig. 6.  Physical picture of iodine feed system (a) and schematic diagram of flow calibration (b).

    图 7  耐碘腐蚀真空试验平台

    Fig. 7.  Iodine corrosion resistance vacuum test platform.

    图 8  探针诊断电路和探针位置示意图, 其中包括法拉第探针和RPA

    Fig. 8.  Probe diagnostic circuits and schematic view of the probe positions, including a Faraday probe and RPA.

    图 9  碘罐温度与质量流量关系拟合曲线

    Fig. 9.  Iodine tank temperature and mass flow fitting curve.

    图 10  碘工质ECR等离子体源放电图像

    Fig. 10.  Image of iodine propellant microwave plasma source discharge.

    图 11  在低流量低功率下, 等离子体源羽流闪烁过程 (a)离子电流密度随时间变化; (b)羽流闪烁过程的图像

    Fig. 11.  Plasma source plume scintillation process at low flow and low power: (a) Change of ion current density with time; (b) image of plume scintillation process.

    图 12  离子电流密度分布

    Fig. 12.  Ion current density distribution.

    图 13  工质利用率

    Fig. 13.  Utilization rate of propellant.

    图 14  不同流量下的离子能量分布

    Fig. 14.  Ion energy distribution at different flow rates.

    图 15  不同功率下的离子能量分布

    Fig. 15.  Ion energy distribution at different power levels.

    图 16  在微波功率为10 W、质量流量为0.52 mg/s的条件下, 0°—90°内的时间平均离子能量角分布图

    Fig. 16.  Contour maps of the time-averaged ion energy angle distribution from 0 to 90° with a 10 W MW power, and 0.52 mg/s mass flow rate.

  • [1]

    Heidt H, Puig-Suari J, Moore A S, Nakasuka S, Twiggs R J 2000 Proceedings of the 14th Annual/USU Conference on Small Satellites Logan, August 21–24, 2000 SSC00-V-5

    [2]

    许亮亮, 蔡明辉, 杨涛, 韩建伟 2020 物理学报 69 165203Google Scholar

    Xu L L, Cai M H, Yang T, Han J W 2020 Acta Phys. Sin. 69 165203Google Scholar

    [3]

    Poghosyan A, Golkar A 2017 Prog. Aero. Sci. 88 59Google Scholar

    [4]

    Tsay M, Model J, Barcroft C, Frongillo J, Zwahlen J, Feng C 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, USA, October 8–12, 2017 IEPC-2017-264

    [5]

    Hillier A, Branam R, Huffman R, Szabo J, Paintal S 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 AIAA-2011-524

    [6]

    Dankanich J W, Calvert D, Kamhawi H, Hickman T, Szabo J, Byrne L 2015 Proceedings of the 34th International Electric Propulsion Conference Kobe-Hyogo, July 4–10, 2015 IEPC-2015-303

    [7]

    Polzin K A, Seixal J F, Mauro S L, Burt A O, Martinez A, Martin A K 2017 Proceedings of the 35th International Electric Propulsion Conference Atlanta, Georgia, October 8–12, 2017 IEPC-2017-11

    [8]

    Szabo J, Robin M, Paintal S, Pote B, Hruby V, Freeman C 2013 Proceedings of the 33th International Electric Propulsion Conference Washington, D. C., October 6–10, 2013 IEPC-2013-311

    [9]

    Tsay M, Frongillo J, Hohman K 2015 Proceedings of the 34th International Electric Propulsion Conference Hyogo-Kobe, July 4–10, 2015 IEPC-2015-273

    [10]

    Rafalskyi D, Martínez J M, Habl L, Rossi E Z, Proynov P, Boré A, Baret T, Poyet A, Lafleur T, Dudin S, Aanesland A 2021 Nature 599 411Google Scholar

    [11]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Souhair N, Duzzi M, Barato F, Cappellini L, Barbato A, Paulon D, Selmo A, Bellomo N, Gloder A, Toson E, Minute M, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-417

    [12]

    Manente M, Trezzolani F, Mantellato R, Scalzi D, Schiavon A, Cappellini L, Barato F, Bellomo N, Gloder A, Toson E, Minute M, Vallisari D, Magarotto M, Pavarin D 2019 Proceedings of the 36th International Electric Propulsion Conference Vienna, September 15–20, 2019 IEPC-2019-419

    [13]

    Bellomo N, Magarotto M, Manente M, Trezzolani F, Mantellato R, Cappellini L, Paulon D, Selmo A, Scalzi D, Minute M, Duzzi M, Barbato A, Schiavon A, Fede S D, Souhair N, Carlo P D, Barato F, Milza F, Toson E, Pavarin D 2022 CEAS Space J. 14 79Google Scholar

    [14]

    Szabo1 J, Pote B, Paintal S, Robin M, Hillier A, Branam R D, Huffman R E 2012 J. Propul. Power 28 848Google Scholar

    [15]

    Dankanich J W, Szabo J, Pote B, Oleson S, Kamhawi H 2014 Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, July 28–30, 2014 AIAA-2014-3905

    [16]

    Tsay M, Frongillo J, Hohman K, Malphrus B K 2015 Proceedings of the 29th AIAA/USU Conference on Small Satellites Logan, August 9, 2015 SSC15-XI-1

    [17]

    Yang J H, Jia S X, Zhang Z H, Zhang X H, Jin T, Li L, Cai Y, Cai J 2020 Plasma Sci. Technol. 22 094006Google Scholar

    [18]

    申英杰 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Shen Y J 2010 M. S. Thesis (Harbin: Harbin Institute of Technology

    [19]

    Shuaibov A K, Grabovaya I A, Gomoki Z T, Kalyuzhnaya A G, Shchedrin A I 2009 Tech. Phys. 54 1819Google Scholar

    [20]

    Matsutani A, Ohtsuki H, Koyama F 2005 Jpn. J. Appl. Phys. 44 L576Google Scholar

    [21]

    Fehsenfeld F C, Evanson K M, Broida H P 1965 Rev. Sci. Instrum. 36 294Google Scholar

    [22]

    Hawley M C, Asmussen J, Filpus J W, Whitehair S, Hoekstra C, Morin T J, Chapman R 1989 J. Propul. Power 5 703Google Scholar

    [23]

    Agnihotri A N, Kelkar A H, Kasthurirangan S, Thulasiram K V, Desai C A, Fernandez W A, Tribedi L C 2011 Phys. Scr. T144 014038Google Scholar

    [24]

    Biri S, Rácz R, Pálinkás J 2012 Rev. Sci. Instrum. 83 02A341Google Scholar

    [25]

    Hargus W A, Lubkeman J S, Remy K E, Gonzales A E 2012 Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Atlanta, Georgia, July 30–August 1, 2012 AIAA-2012-4316

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    Koizumi H, Kuninaka H 2011 Proceedings of the 32nd International Electric Propulsion Conference Wiesbaden, September 11–15, 2011 IEPC-2011-297

    [28]

    Désangles V, Packan D, Jarrige J, Peterschmitt S, Dietz P, Scharmann S, Holste K, Klar P 2022 Proceedings of the 37th International Electric Propulsion Conference Cambridge, June 19–23, 2022 IEPC-2022-513

    [29]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [30]

    Zeng M, Liu H, Chen Z Q, Huang H Y, Yu D R 2021 Vacuum 192 110486Google Scholar

  • [1] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟. 物理学报, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [2] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [3] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响. 物理学报, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [4] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [5] 刘辉, 蒋文嘉, 宁中喜, 崔凯, 曾明, 曹希峰, 于达仁. 使用不同工质的会切磁场等离子体推力器. 物理学报, 2018, 67(14): 145201. doi: 10.7498/aps.67.20180366
    [6] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [7] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [9] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [10] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究. 物理学报, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [11] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应. 物理学报, 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [12] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [13] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [14] 叶 超, 杜 伟, 宁兆元, 程珊华. 栅网与偏压对CHF3电子回旋共振放电等离子体特性的影响. 物理学报, 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [15] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [16] 叶超, 宁兆元, 程珊华. 电子回旋共振等离子体增强沉积氟化非晶碳薄膜的光学性质. 物理学报, 2001, 50(10): 2017-2022. doi: 10.7498/aps.50.2017
    [17] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [18] 杜小龙, 陈广超, 江德仪, 姚鑫兹, 朱鹤孙. 电子回旋共振等离子体特性及其对生长氮化镓晶膜的影响. 物理学报, 1999, 48(2): 257-266. doi: 10.7498/aps.48.257
    [19] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [20] 刘濮鲲, 熊彩东, 刘盛纲, 唐昌建, 钱尚介. 一种新的等离子体脉塞系统——离子通道电子回旋脉塞. 物理学报, 1997, 46(5): 892-896. doi: 10.7498/aps.46.892
计量
  • 文章访问数:  2660
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-08-15
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回