搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面工程调控GaN基异质结界面热传导性能研究

王权杰 邓宇戈 王仁宗 刘向军

引用本文:
Citation:

界面工程调控GaN基异质结界面热传导性能研究

王权杰, 邓宇戈, 王仁宗, 刘向军

Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces

Wang Quan-Jie, Deng Yu-Ge, Wang Ren-Zong, Liu Xiang-Jun
PDF
HTML
导出引用
  • GaN以其宽禁带、高电子迁移率、高击穿场强等特点在高频大功率电子器件领域有着巨大的应用前景. 大功率GaN电子器件在工作时存在明显的自热效应, 产生大量焦耳热, 散热问题已成为制约其发展的瓶颈. 而GaN与衬底间的界面热导是影响GaN电子器件热管理全链条上的关键环节. 本文首先讨论各种GaN界面缺陷及其对界面热导的影响; 然后介绍常见的界面热导研究方法, 包括理论分析和实验测量; 接着结合具体案例介绍近些年发展的GaN界面热导优化方法, 包括常见的化学键结合界面类型及范德瓦耳斯键结合的弱耦合界面; 最后总结全文, 为GaN器件结构设计提供有价值参考.
    Gallium nitride (GaN) has great potential applications in the field of high-frequency and high-power electronic devices because of its excellent material properties such as wide band gap, high electron mobility, high breakdown field strength. However, the high power GaN electronic device also exhibits significant self-heating effects in operation, such as a large amount of Joule heat localized in the thermal channel, and heat dissipation has become a bottleneck in its applications. The interface thermal conductance (ITC) between GaN and its substrate is the key to determining the thermal dissipation. In this work the various GaN interface defects and their effects on ITC are first discussed, and then some methods of studying interface thermal transport are introduced, including theoretical analysis and experimental measurements. Then, some GaN ITC optimization strategies developed in recent years are introduced through comparing the specific cases. In addition to the common chemical bond interface, the weak coupling interface by van der Waals bond is also discussed. Finally, a summary for this review is presented. We hope that this review can provide valuable reference for actually designing GaN devices.
      通信作者: 刘向军, xjliu@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52150610495, 52206080)和上海市科委科技基金(批准号: 21TS1401500, 22YF1400100)资助的课题.
      Corresponding author: Liu Xiang-Jun, xjliu@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52150610495, 52206080) and the Shanghai Committee of Science and Technology, China (Grant Nos. 21TS1401500, 22YF1400100).
    [1]

    Li M, Chen F L, Kocher C, Zhang H, Li S X, Huang F, Zhang J, Taylor R A 2020 ACS Appl. Electron. Mater. 2 571Google Scholar

    [2]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [3]

    Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, Gao P 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2117027119Google Scholar

    [4]

    Filippov K A, Balandin A A 2003 MRS Internet J. Nitride Semicond. Res. 8 4Google Scholar

    [5]

    Cheng Z, Mu F W, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. Interfaces 12 8376Google Scholar

    [6]

    Shih H Y, Shiojiri M, Chen C H, Yu S F, Ko C T, Yang J R, Lin R M, Chen M J 2015 Sci. Rep. 5 13671Google Scholar

    [7]

    开翠红, 王蓉, 杨德仁, 皮孝东 2021 人工晶体学报 50 1780Google Scholar

    Kai C H, Wang R, Yang D R, Pi X D 2021 J. Synth. Cryst. 50 1780Google Scholar

    [8]

    Lee S B, Ju J W, Kim Y M, Yoo S J, Kim J G, Han H N, Lee D N 2015 AIP Adv. 5 077180Google Scholar

    [9]

    Yates L, Anderson J, Gu X, Lee C, Bai T Y, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. Interfaces 10 24302Google Scholar

    [10]

    Chen J, Xu X F, Zhou J, Li B W 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [11]

    Wang Q J, Wang X J, Liu X J, Zhang J 2021 J. Appl. Phys. 129 235102Google Scholar

    [12]

    Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [13]

    Jani O, Yu H B, Trybus E, Jampana B, Ferguson I, Doolittle A, Honsberg C 2007 22nd European Photovoltaic Solar Energy Conference Milan, Italy September 3–7, 2007 p64

    [14]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar

    [15]

    Krishnamoorthy S, Lee E W, Lee C H, Zhang Y W, McCulloch W D, Johnson J M, Hwang J, Wu Y Y, Rajan S 2016 Appl. Phys. Lett. 109 183505Google Scholar

    [16]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [17]

    Zhang H G, Wang H Y, Xiong S Y, Han H X, Volz S, Ni Y X 2018 J. Phys. Chem. C 122 2641Google Scholar

    [18]

    Wang Q J, Zhang J, Xiong Y C, Li S H, Chernysh V, Liu X J 2023 ACS Appl. Mater. Interfaces 15 3377Google Scholar

    [19]

    Lyeo H K, Cahill D G 2006 Phys. Rev. B 73 144301Google Scholar

    [20]

    Zhou X W, Jones R E, Kimmer C J, Duda J C, Hopkins P E 2013 Phys. Rev. B 87 094303Google Scholar

    [21]

    Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16Google Scholar

    [22]

    Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford university press) p459

    [23]

    Cheng Z, Li R Y, Yan X X, Jernigan G, Shi J J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X Q, Luo T F, Graham S 2021 Nat. Commun. 12 6901Google Scholar

    [24]

    Gordiz K, Henry A 2016 J. Appl. Phys. 119 015101Google Scholar

    [25]

    Giri A, Hopkins P E 2019 Adv. Funct. Mater. 30 1903857Google Scholar

    [26]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 91 115426Google Scholar

    [27]

    Chen X K, Pang M, Chen T, Du D, Chen K Q 2020 ACS Appl. Mater. Interfaces 12 15517Google Scholar

    [28]

    Wu D, Ding H, Fan Z Q, Jia P Z, Xie H Q, Chen X K 2022 Appl. Surf. Sci. 581 152344Google Scholar

    [29]

    Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S, Xiong S Y 2019 Int. J. Heat Mass Transfer 144 118608Google Scholar

    [30]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 92 245411Google Scholar

    [31]

    Gordiz K, Henry A 2015 New J. Phys. 17 103002Google Scholar

    [32]

    Gordiz K, Henry A 2017 J. Appl. Phys. 121 025102Google Scholar

    [33]

    Zhou Y G, Hu M 2017 Phys. Rev. B 95 115313Google Scholar

    [34]

    Feng T L, Zhong Y, Shi J J, Ruan X L 2019 Phys. Rev. B 99 045301Google Scholar

    [35]

    Feng T L, Yao W J, Wang Z Y, Shi J J, Li C, Cao B Y, Ruan X L 2017 Phys. Rev. B 95 195202Google Scholar

    [36]

    Huang Z X, Wang Q J, Liu X Y, Liu X J 2023 Phys. Chem. Chem. Phys. 25 2349Google Scholar

    [37]

    Field D E, Cuenca J A, Smith M, Fairclough S M, Massabuau F C, Pomeroy J W, Williams O, Oliver R A, Thayne I, Kuball M 2020 ACS Appl. Mater. Interfaces 12 54138Google Scholar

    [38]

    Malakoutian M, Field D E, Hines N J, Pasayat S, Graham S, Kuball M, Chowdhury S 2021 ACS Appl. Mater. Interfaces 13 60553Google Scholar

    [39]

    Song Y W, Shoemaker D, Leach J H, McGray C, Huang H L, Bhattacharyya A, Zhang Y Y, Gonzalez-Valle C U, Hess T, Zhukovsky S, Ferri K, Lavelle R M, Perez C, Snyder D W, Maria J P, Ramos-Alvarado B, Wang X J, Krishnamoorthy S, Hwang J, Foley B M, Choi S 2021 ACS Appl. Mater. Interfaces 13 40817Google Scholar

    [40]

    Zheng W D, McClellan C J, Pop E, Koh Y K 2022 ACS Appl. Mater. Interfaces 14 22372Google Scholar

    [41]

    El Sachat A, Köenemann F, Menges F, Del Corro E, Garrido J A, Torres C M S, Alzina F, Gotsmann B 2019 2D Mater. 6 025034Google Scholar

    [42]

    Taube A, Judek J, Lapinska A, Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061Google Scholar

    [43]

    Yalon E, McClellan C J, Smithe K K H, Munoz Rojo M, Xu R L, Suryavanshi S V, Gabourie A J, Neumann C M, Xiong F, Farimani A B, Pop E 2017 Nano Lett. 17 3429Google Scholar

    [44]

    Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y M, Heinz T F, Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923Google Scholar

    [45]

    Yalon E, Aslan B, Smithe K K H, McClellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X Q, Goodson K E, Heinz T F, Pop E 2017 ACS Appl. Mater. Interfaces 9 43013Google Scholar

    [46]

    Behranginia A, Hemmat Z, Majee A K, Foss C J, Yasaei P, Aksamija Z, Salehi-Khojin A 2018 ACS Appl. Mater. Interfaces 10 24892Google Scholar

    [47]

    Waltereit P, Brandt O, Trampert A, Ramsteiner M, Reiche M, Qi M, Ploog K H 1999 Appl. Phys. Lett. 74 3660Google Scholar

    [48]

    Tanaka S, Iwai S, Aoyagi Y 1997 J. crystal growth 170 329Google Scholar

    [49]

    Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar

    [50]

    Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar

    [51]

    Hsieh W P, Lyons A S, Pop E, Keblinski P, Cahill D G 2011 Phys. Rev. B 84 184107Google Scholar

    [52]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [53]

    English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar

    [54]

    Polanco C A, Rastgarkafshgarkolaei R, Zhang J J, Le N Q, Norris P M, Ghosh A W 2017 Phys. Rev. B 95 195303Google Scholar

    [55]

    Lee E, Luo T F 2017 Phys. Chem. Chem. Phys. 19 18407Google Scholar

    [56]

    Hu M, Zhang X L, Poulikakos D, Grigoropoulos C P 2011 Int. J. Heat Mass Transfer 54 5183Google Scholar

    [57]

    Chen B, Zhang L F 2015 J. Phys. Condens. Matter. 27 125401Google Scholar

    [58]

    Xiong G H, Wang J S, Ma D K, Zhang L F 2020 EPL (Europhysics Letters) 128 54007Google Scholar

    [59]

    Ma D K, Xing Y H, Zhang L F 2023 J. Phys. Condens. Matter. 35 053001

    [60]

    Yun F, Reshchikov M A, He L, Morkoç H, Inoki C K, Kuan T S 2002 Appl. Phys. Lett. 81 4142Google Scholar

    [61]

    Neudeck P G, Powell J A, Beheim G M, Benavage E L, Abel P B, Trunek A J, Spry D J, Dudley M, Vetter W M 2002 J. Appl. Phys. 92 2391Google Scholar

    [62]

    Lee E, Zhang T, Hu M, Luo T 2016 Phys. Chem. Chem. Phys. 18 16794Google Scholar

    [63]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [64]

    Lee E, Zhang T, Yoo T, Guo Z, Luo T F 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar

    [65]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954Google Scholar

    [66]

    Lee E, Luo T F 2018 Appl. Phys. Lett. 112 011603Google Scholar

    [67]

    Li R Y, Gordiz K, Henry A, Hopkins P E, Lee E, Luo T F 2019 Phys. Chem. Chem. Phys. 21 17029Google Scholar

    [68]

    Zhou Y, Zhou S, Wan S, Zou B, Feng Y X, Mei R, Wu H, Shigekawa N, Liang J B, Tan P H, Kuball M 2023 Appl. Phys. Lett. 122 082103Google Scholar

    [69]

    Mu F W, Cheng Z, Shi J J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. Interfaces 11 33428Google Scholar

    [70]

    Spindlberger A, Kysylychyn D, Thumfart L, Adhikari R, Rastelli A, Bonanni A 2021 Appl. Phys. Lett. 118 062105Google Scholar

    [71]

    Pécz B, Makkai Z, Frayssinet E, Beaumont B, Gibart P 2005 Phys. Status Solidi C 2 1310Google Scholar

    [72]

    Wang Q J, Zhang J, Chernysh V, Liu X J 2023 arXiv: 2306.14901 [physics.app-ph

    [73]

    Liu X Y, Wang Q J, Wang R Z, Wang S, Liu X J 2023 J. Appl. Phys. 133 095101Google Scholar

    [74]

    Shulumba N, Raza Z, Hellman O, Janzén E, Abrikosov I A, Odén M 2016 Phys. Rev. B 94 104305Google Scholar

    [75]

    Ziade E, Yang J, Brummer G, Nothern D, Moustakas T, Schmidt A J 2015 Appl. Phys. Lett. 107 091605Google Scholar

    [76]

    Lee E W, Lee C H, Paul P K, Ma L, McCulloch W D, Krishnamoorthy S, Wu Y Y, Arehart A R, Rajan S 2015 Appl. Phys. Lett. 107 103505Google Scholar

    [77]

    Ong Z Y, Qiu B, Xu S L, Ruan X L, Pop E 2018 J. Appl. Phys. 123 115107Google Scholar

    [78]

    Loh T A, Chua D H 2014 ACS Appl. Mater. Interfaces 6 15966Google Scholar

    [79]

    Muruganathan M, Sun J, Imamura T, Mizuta H 2015 Nano Lett. 15 8176Google Scholar

    [80]

    Liu X J, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 12541Google Scholar

    [81]

    Chen W, Zhang J C, Yue Y N 2016 Int. J. Heat Mass Transfer 103 1058Google Scholar

    [82]

    Zhang L N, Zhong Y, Qian X, Song Q C, Zhou J W, Li L, Guo L, Chen G, Wang E N 2021 ACS Appl. Mater. Interfaces 13 46055Google Scholar

    [83]

    Liu W X, Huang X N, Yue Y N 2023 Int. J. Heat Mass Transfer 201 123673Google Scholar

    [84]

    Liu D H, Chen X S, Yan Y P, et al. 2019 Nat. Commun. 10 1188Google Scholar

    [85]

    Sadeghi M M, Jo I, Shi L 2013 Proc. Natl. Acad. Sci. U. S. A. 110 16321Google Scholar

  • 图 1  各种GaN界面缺陷 (a) 界面非晶层[5]; (b) 原子位错[6]; (c) 应力[7,8]; (d) 空隙[9]

    Fig. 1.  Various types of interfacial defects in GaN: (a) Interfacial amorphous layer[5]; (b) atoms dislocation[6]; (c) strain[7,8]; (d) voids[9]

    图 2  界面热导研究方法 (a) AMM和DMM模型; (b) 声子波包法; (c) 原子格林函数法; (d) 分子动力学方法

    Fig. 2.  Study methods for interface thermal transport: (a) AMM and DMM models; (b) phonon wave packet method; (c) atomic Green’s function method; (d) molecular dynamics method.

    图 3  界面热导实验测量方法 (a) 时域热反射法; (b) 拉曼法测MoS2/SiO2界面热导[45]

    Fig. 3.  Experimental measured methods for thermal boundary conductance: (a) Time-domain thermo-reflectance method; (b) MoS2/SiO2 thermal boundary conductance measured by Raman method[45].

    图 4  (a) 利用时域热反射法测量的GaN/金刚石、GaN/AlN/金刚石、GaN/SiN/金刚石界面热导[9]; (b) 高分辨率TEM下观测到的GaN/SiN/金刚石界面图象[9]; (c) GaN/SiC界面热导与外延和非外延AlN插层厚度的关系, 虚线表示非外延插层厚度为0时的界面热导[56]; (d) 对比GaN/SiC界面有一个元胞厚的非外延AlN插层(实线)和没有AlN插层(虚线)时的声子态密度[56]

    Fig. 4.  (a) Measured interfacial thermal resistance for GaN/diamond, GaN/AlN/diamond, and GaN/SiN/diamond interfaces by the time-domain thermo-reflectance technique[9]; (b) high-resolution TEM image for GaN/SiN/diamond interface[9]; (c) interfacial thermal conductance between GaN and SiC with epitaxial or non-epitaxial AlN interlayer as a function of AlN thickness. The dashed line refers to the non-epitaxial interface that with no interlayer[56]; (d) comparison of vibrational density of states of GaN/SiC interface with 1 unit cell non-epitaxial AlN interlayer (solid lines) and bare (dotted lines) GaN/SiC interface[56].

    图 5  (a) 带有石墨烯插层的图形化GaN/金刚石界面形貌以及GaN/金刚石界面为平面时的GaN声子态密度, 其中红色箭头表示受石墨烯影响激发出来声子模态[63]; (b) 不同纳米柱长度、间隔时的Al/Si界面热导, 虚线表示理论预测结果, 实线表示光滑界面时的界面热导[64]

    Fig. 5.  (a) Graphical GaN/diamond heterostructure with a graphene interlayer as well the vibrational density of states in GaN, where the red arrow refers to the excited phonon mode by graphene interlayer[63]; (b) thermal boundary conductance for Si/Al interface with various lengths and intervals of nanopillars, where the dotted lines are predicted by the theoretical model and the solid line refers to the planar interface[64].

    图 6  (a) 同位素掺杂的SiC/GaN界面模型, 以及在不同掺杂浓度时的界面热导[66]; (b) 轻质量原子掺杂的SiC/GaN界面模型, 以及在不同掺杂浓度f和掺杂长度L时的界面热导[67]

    Fig. 6.  (a) Structure of GaN/SiC interface with isotope doping, and the calculated thermal boundary conductance with different doping concentrations[66]; (b) structure of GaN/SiC interface with light atoms doping, and the calculated thermal boundary conductance with different doping concentrations (f) and doping lengths (L)[67].

    图 7  (a) LA模声子波包穿过GaN/AlN界面非晶层后的散射画面[72]; (b) TA模声子波包在穿过不同厚度界面扩散层时扩散层内能量随时间的变化[73]; (c) 不同GaN/AlN界面形貌时的界面热导[11]; (d) GaN/SiC退火前后的界面形貌[69]

    Fig. 7.  (a) Snapshots of LA wave packet passing through the amorphous layer at GaN/AlN interface[72]; (b) energy variation in the compositional diffusion layer as a function of time[73]; (c) thermal boundary conductance of GaN/AlN with different interface morphologies[11]; (d) interface morphologies of GaN/SiC with and without annealing treatment[69].

    图 8  (a) GaN/MoS2界面热导和声子态密度重叠度S随衬底表面粗糙度δ的变化[18]; (b) MoS2和GaN衬底不同粗糙度表面层原子的声子态密度分布[18]

    Fig. 8.  (a) Evolution of thermal boundary conductance and the density of phonon states overlap factor S as a function of surface roughness δ [18]; (b) density of phonon states distributions for MoS2 and GaN surface atoms with different δ [18].

    图 9  (a) SiO2/MoS2界面热导与界面结合能的关系[82]; (b) SiO2/MoS2界面热导与衬底表面凹槽深度的关系[83]

    Fig. 9.  (a) Correlation between SiO2/MoS2 thermal boundary conductance and interface binding energy[82]; (b) correlation between SiO2/MoS2 thermal boundary conductance and groove depth[83].

  • [1]

    Li M, Chen F L, Kocher C, Zhang H, Li S X, Huang F, Zhang J, Taylor R A 2020 ACS Appl. Electron. Mater. 2 571Google Scholar

    [2]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [3]

    Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, Gao P 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2117027119Google Scholar

    [4]

    Filippov K A, Balandin A A 2003 MRS Internet J. Nitride Semicond. Res. 8 4Google Scholar

    [5]

    Cheng Z, Mu F W, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. Interfaces 12 8376Google Scholar

    [6]

    Shih H Y, Shiojiri M, Chen C H, Yu S F, Ko C T, Yang J R, Lin R M, Chen M J 2015 Sci. Rep. 5 13671Google Scholar

    [7]

    开翠红, 王蓉, 杨德仁, 皮孝东 2021 人工晶体学报 50 1780Google Scholar

    Kai C H, Wang R, Yang D R, Pi X D 2021 J. Synth. Cryst. 50 1780Google Scholar

    [8]

    Lee S B, Ju J W, Kim Y M, Yoo S J, Kim J G, Han H N, Lee D N 2015 AIP Adv. 5 077180Google Scholar

    [9]

    Yates L, Anderson J, Gu X, Lee C, Bai T Y, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. Interfaces 10 24302Google Scholar

    [10]

    Chen J, Xu X F, Zhou J, Li B W 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [11]

    Wang Q J, Wang X J, Liu X J, Zhang J 2021 J. Appl. Phys. 129 235102Google Scholar

    [12]

    Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [13]

    Jani O, Yu H B, Trybus E, Jampana B, Ferguson I, Doolittle A, Honsberg C 2007 22nd European Photovoltaic Solar Energy Conference Milan, Italy September 3–7, 2007 p64

    [14]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar

    [15]

    Krishnamoorthy S, Lee E W, Lee C H, Zhang Y W, McCulloch W D, Johnson J M, Hwang J, Wu Y Y, Rajan S 2016 Appl. Phys. Lett. 109 183505Google Scholar

    [16]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [17]

    Zhang H G, Wang H Y, Xiong S Y, Han H X, Volz S, Ni Y X 2018 J. Phys. Chem. C 122 2641Google Scholar

    [18]

    Wang Q J, Zhang J, Xiong Y C, Li S H, Chernysh V, Liu X J 2023 ACS Appl. Mater. Interfaces 15 3377Google Scholar

    [19]

    Lyeo H K, Cahill D G 2006 Phys. Rev. B 73 144301Google Scholar

    [20]

    Zhou X W, Jones R E, Kimmer C J, Duda J C, Hopkins P E 2013 Phys. Rev. B 87 094303Google Scholar

    [21]

    Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16Google Scholar

    [22]

    Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford university press) p459

    [23]

    Cheng Z, Li R Y, Yan X X, Jernigan G, Shi J J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X Q, Luo T F, Graham S 2021 Nat. Commun. 12 6901Google Scholar

    [24]

    Gordiz K, Henry A 2016 J. Appl. Phys. 119 015101Google Scholar

    [25]

    Giri A, Hopkins P E 2019 Adv. Funct. Mater. 30 1903857Google Scholar

    [26]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 91 115426Google Scholar

    [27]

    Chen X K, Pang M, Chen T, Du D, Chen K Q 2020 ACS Appl. Mater. Interfaces 12 15517Google Scholar

    [28]

    Wu D, Ding H, Fan Z Q, Jia P Z, Xie H Q, Chen X K 2022 Appl. Surf. Sci. 581 152344Google Scholar

    [29]

    Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S, Xiong S Y 2019 Int. J. Heat Mass Transfer 144 118608Google Scholar

    [30]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 92 245411Google Scholar

    [31]

    Gordiz K, Henry A 2015 New J. Phys. 17 103002Google Scholar

    [32]

    Gordiz K, Henry A 2017 J. Appl. Phys. 121 025102Google Scholar

    [33]

    Zhou Y G, Hu M 2017 Phys. Rev. B 95 115313Google Scholar

    [34]

    Feng T L, Zhong Y, Shi J J, Ruan X L 2019 Phys. Rev. B 99 045301Google Scholar

    [35]

    Feng T L, Yao W J, Wang Z Y, Shi J J, Li C, Cao B Y, Ruan X L 2017 Phys. Rev. B 95 195202Google Scholar

    [36]

    Huang Z X, Wang Q J, Liu X Y, Liu X J 2023 Phys. Chem. Chem. Phys. 25 2349Google Scholar

    [37]

    Field D E, Cuenca J A, Smith M, Fairclough S M, Massabuau F C, Pomeroy J W, Williams O, Oliver R A, Thayne I, Kuball M 2020 ACS Appl. Mater. Interfaces 12 54138Google Scholar

    [38]

    Malakoutian M, Field D E, Hines N J, Pasayat S, Graham S, Kuball M, Chowdhury S 2021 ACS Appl. Mater. Interfaces 13 60553Google Scholar

    [39]

    Song Y W, Shoemaker D, Leach J H, McGray C, Huang H L, Bhattacharyya A, Zhang Y Y, Gonzalez-Valle C U, Hess T, Zhukovsky S, Ferri K, Lavelle R M, Perez C, Snyder D W, Maria J P, Ramos-Alvarado B, Wang X J, Krishnamoorthy S, Hwang J, Foley B M, Choi S 2021 ACS Appl. Mater. Interfaces 13 40817Google Scholar

    [40]

    Zheng W D, McClellan C J, Pop E, Koh Y K 2022 ACS Appl. Mater. Interfaces 14 22372Google Scholar

    [41]

    El Sachat A, Köenemann F, Menges F, Del Corro E, Garrido J A, Torres C M S, Alzina F, Gotsmann B 2019 2D Mater. 6 025034Google Scholar

    [42]

    Taube A, Judek J, Lapinska A, Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061Google Scholar

    [43]

    Yalon E, McClellan C J, Smithe K K H, Munoz Rojo M, Xu R L, Suryavanshi S V, Gabourie A J, Neumann C M, Xiong F, Farimani A B, Pop E 2017 Nano Lett. 17 3429Google Scholar

    [44]

    Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y M, Heinz T F, Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923Google Scholar

    [45]

    Yalon E, Aslan B, Smithe K K H, McClellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X Q, Goodson K E, Heinz T F, Pop E 2017 ACS Appl. Mater. Interfaces 9 43013Google Scholar

    [46]

    Behranginia A, Hemmat Z, Majee A K, Foss C J, Yasaei P, Aksamija Z, Salehi-Khojin A 2018 ACS Appl. Mater. Interfaces 10 24892Google Scholar

    [47]

    Waltereit P, Brandt O, Trampert A, Ramsteiner M, Reiche M, Qi M, Ploog K H 1999 Appl. Phys. Lett. 74 3660Google Scholar

    [48]

    Tanaka S, Iwai S, Aoyagi Y 1997 J. crystal growth 170 329Google Scholar

    [49]

    Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar

    [50]

    Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar

    [51]

    Hsieh W P, Lyons A S, Pop E, Keblinski P, Cahill D G 2011 Phys. Rev. B 84 184107Google Scholar

    [52]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [53]

    English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar

    [54]

    Polanco C A, Rastgarkafshgarkolaei R, Zhang J J, Le N Q, Norris P M, Ghosh A W 2017 Phys. Rev. B 95 195303Google Scholar

    [55]

    Lee E, Luo T F 2017 Phys. Chem. Chem. Phys. 19 18407Google Scholar

    [56]

    Hu M, Zhang X L, Poulikakos D, Grigoropoulos C P 2011 Int. J. Heat Mass Transfer 54 5183Google Scholar

    [57]

    Chen B, Zhang L F 2015 J. Phys. Condens. Matter. 27 125401Google Scholar

    [58]

    Xiong G H, Wang J S, Ma D K, Zhang L F 2020 EPL (Europhysics Letters) 128 54007Google Scholar

    [59]

    Ma D K, Xing Y H, Zhang L F 2023 J. Phys. Condens. Matter. 35 053001

    [60]

    Yun F, Reshchikov M A, He L, Morkoç H, Inoki C K, Kuan T S 2002 Appl. Phys. Lett. 81 4142Google Scholar

    [61]

    Neudeck P G, Powell J A, Beheim G M, Benavage E L, Abel P B, Trunek A J, Spry D J, Dudley M, Vetter W M 2002 J. Appl. Phys. 92 2391Google Scholar

    [62]

    Lee E, Zhang T, Hu M, Luo T 2016 Phys. Chem. Chem. Phys. 18 16794Google Scholar

    [63]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [64]

    Lee E, Zhang T, Yoo T, Guo Z, Luo T F 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar

    [65]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954Google Scholar

    [66]

    Lee E, Luo T F 2018 Appl. Phys. Lett. 112 011603Google Scholar

    [67]

    Li R Y, Gordiz K, Henry A, Hopkins P E, Lee E, Luo T F 2019 Phys. Chem. Chem. Phys. 21 17029Google Scholar

    [68]

    Zhou Y, Zhou S, Wan S, Zou B, Feng Y X, Mei R, Wu H, Shigekawa N, Liang J B, Tan P H, Kuball M 2023 Appl. Phys. Lett. 122 082103Google Scholar

    [69]

    Mu F W, Cheng Z, Shi J J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. Interfaces 11 33428Google Scholar

    [70]

    Spindlberger A, Kysylychyn D, Thumfart L, Adhikari R, Rastelli A, Bonanni A 2021 Appl. Phys. Lett. 118 062105Google Scholar

    [71]

    Pécz B, Makkai Z, Frayssinet E, Beaumont B, Gibart P 2005 Phys. Status Solidi C 2 1310Google Scholar

    [72]

    Wang Q J, Zhang J, Chernysh V, Liu X J 2023 arXiv: 2306.14901 [physics.app-ph

    [73]

    Liu X Y, Wang Q J, Wang R Z, Wang S, Liu X J 2023 J. Appl. Phys. 133 095101Google Scholar

    [74]

    Shulumba N, Raza Z, Hellman O, Janzén E, Abrikosov I A, Odén M 2016 Phys. Rev. B 94 104305Google Scholar

    [75]

    Ziade E, Yang J, Brummer G, Nothern D, Moustakas T, Schmidt A J 2015 Appl. Phys. Lett. 107 091605Google Scholar

    [76]

    Lee E W, Lee C H, Paul P K, Ma L, McCulloch W D, Krishnamoorthy S, Wu Y Y, Arehart A R, Rajan S 2015 Appl. Phys. Lett. 107 103505Google Scholar

    [77]

    Ong Z Y, Qiu B, Xu S L, Ruan X L, Pop E 2018 J. Appl. Phys. 123 115107Google Scholar

    [78]

    Loh T A, Chua D H 2014 ACS Appl. Mater. Interfaces 6 15966Google Scholar

    [79]

    Muruganathan M, Sun J, Imamura T, Mizuta H 2015 Nano Lett. 15 8176Google Scholar

    [80]

    Liu X J, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 12541Google Scholar

    [81]

    Chen W, Zhang J C, Yue Y N 2016 Int. J. Heat Mass Transfer 103 1058Google Scholar

    [82]

    Zhang L N, Zhong Y, Qian X, Song Q C, Zhou J W, Li L, Guo L, Chen G, Wang E N 2021 ACS Appl. Mater. Interfaces 13 46055Google Scholar

    [83]

    Liu W X, Huang X N, Yue Y N 2023 Int. J. Heat Mass Transfer 201 123673Google Scholar

    [84]

    Liu D H, Chen X S, Yan Y P, et al. 2019 Nat. Commun. 10 1188Google Scholar

    [85]

    Sadeghi M M, Jo I, Shi L 2013 Proc. Natl. Acad. Sci. U. S. A. 110 16321Google Scholar

  • [1] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [2] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [3] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [4] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [5] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [6] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导. 物理学报, 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [7] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [8] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [9] 金蔚, 惠宁菊, 屈世显. 螺旋纳米带中的声子输运. 物理学报, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [10] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [11] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [12] 许晟瑞, 张进城, 李志明, 周小伟, 许志豪, 赵广才, 朱庆伟, 张金凤, 毛维, 郝跃. 金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究. 物理学报, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [13] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [14] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Er+O的GaN薄膜光学性质的研究. 物理学报, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [15] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [16] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [17] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [18] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究. 物理学报, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [19] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  5030
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-07-21
  • 上网日期:  2023-07-22
  • 刊出日期:  2023-11-20

/

返回文章
返回