搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜切蓝宝石衬底上GaN薄膜的位错降低机制

徐爽 许晟瑞 王心颢 卢灏 刘旭 贠博祥 张雅超 张涛 张进成 郝跃

引用本文:
Citation:

斜切蓝宝石衬底上GaN薄膜的位错降低机制

徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃

Dislocation reduction mechanism os GaN films on vicinal sapphire substrates

Xu Shuang, Xu Sheng-Rui, Wang Xin-Hao, Lu Hao, Liu Xu, Yun Bo-Xiang, Zhang Ya-Chao, Zhang Tao, Zhang Jin-Cheng, Hao Yue
PDF
HTML
导出引用
  • GaN材料以其宽禁带、高击穿电场、高热导率、直接带隙等优势被广泛应用于光电子器件、大功率器件以及高频微波器件等方面. 由于GaN材料异质外延带来的大晶格失配和热失配问题, GaN在生长过程中会产生大量位错, 降低了GaN材料晶体质量, 导致器件性能难以进一步提升. 为此, 研究人员提出使用斜切衬底来降低位错密度, 但是关于斜切衬底上外延层的位错湮灭机制的研究还不充分. 所以, 本文采用金属有机化合物化学气相淀积技术在不同角度的斜切蓝宝石衬底上生长了GaN薄膜, 采用原子力显微镜、高分辨X射线衍射仪、光致发光测试、透射电子显微镜详细地分析了斜切衬底对GaN材料的影响. 斜切衬底可以显著降低GaN材料的位错密度, 但会导致其表面形貌发生退化. 并且衬底斜切角度越大, 样品的位错密度越低. 通过透射电子显微镜观察到了斜切衬底上特殊的位错终止现象, 这是斜切衬底降低位错密度的主要原因之一. 基于上述现象, 提出了斜切衬底上GaN生长模型, 解释了斜切衬底提高GaN晶体质量的原因.
    GaN materials are widely used in optoelectronic devices, high-power devices and high-frequency microwave devices because of their excellent characteristics, such as wide frequency band, high breakdown electric field, high thermal conductivity, and direct band gap. Owing to the large lattice mismatch and thermal mismatch brought by the heterogeneous epitaxy of GaN material, the GaN epitaxial layer will produce a great many dislocations in the growth process, resulting in the poor crystal quality of GaN material and the difficulty in further improving the device performance. Therefore, researchers have proposed the use of vicinal substrate to reduce the dislocation density of GaN material, but the dislocation annihilation mechanism in GaN film on vicinal substrate has not been sufficiently studied. Therefore, in this paper, GaN thin films are grown on vicinal sapphire substrates at different angles by using metal organic chemical vapor deposition technique. Atomic force microscope, high resolution X-ray diffractometer, photoluminescence testing, and transmission electron microscopy are used to analyze in detail the effects of vicinal substrates on GaN materials. The use of vicinal substrates can significantly reduce the dislocation density of GaN materials, but lead to degradation of their surface morphology morphologies. And the larger the substrate vicinal angle, the lower the dislocation density of the sample is. The dislocation density of the sample with a 5º bevel cut on the substrate is reduced by about one-third compared to that of the sample with a flat substrate. The special dislocation termination on the mitered substrate is observed by transmission electron microscopy, which is one of the main reasons for the reducing the dislocation density on the mitered substrate. The step merging on the vicinal sapphire substrate surface leads to both transverse growth and longitudinal growth of GaN in the growth process. The transverse growth region blocks the dislocations, resulting in an abrupt interruption of the dislocations during propagation, which in turn reduces the dislocation density.Based on the above phenomena, a model of GaN growth on vicinal substrate is proposed to explain the reason why the quality of GaN crystal can be improved by vicinal substrate.
      通信作者: 许晟瑞, srxu@xidian.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3604400)、国家自然科学基金(批准号: 62074120, 62134006)和中央高校基本科研业务费(批准号: JB211108)资助的课题.
      Corresponding author: Xu Sheng-Rui, srxu@xidian.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3604400), the National Natural Science Foundation of China (Grant Nos. 62074120, 62134006), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. JB211108).
    [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363Google Scholar

    [2]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [3]

    郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 物理学报 66 167301Google Scholar

    Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar

    [4]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [5]

    Li G Q, Wang W L, Yang W J, Lin Y H, Wang H Y, Lin Z T, Zhou S Z 2016 Rep. Prog. Phys. 79 056501Google Scholar

    [6]

    Jena D, Mishra U K 2002 Appl. Phys. Lett. 80 64Google Scholar

    [7]

    刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃 2022 物理学报 71 057301Google Scholar

    Liu C, Li M, Wen Z, Gu Z Y, Yang M C, Liu W H, Han C Y, Zhang Y, Geng L, Hao Y 2022 Acta Phys. Sin. 71 057301Google Scholar

    [8]

    Zhou S J, Zhao X Y, Du P, Zhang Z Q, Liu X, Liu S, Guo A 2022 Nanoscale 14 4887Google Scholar

    [9]

    Kung P, Walker D, Hamilton N, Diaz J, Razeghi M 1999 Appl. Phys. Lett. 74 570Google Scholar

    [10]

    Zhao Y, Xu S R, Feng L S, Peng R S, Fan X M, Du J J, Su H K, Zhang J C, Hao Y 2022 Mater. Sci. Semicond. Process. 143 106535Google Scholar

    [11]

    Ni Y Q, He Z Y, Zhou D Q, Yao Y, Yang F, Zhou G L, Shen Z, Zhong J, Zhen Y, Zhang B J, Liu Y 2015 Superlattices Microstruct. 83 811Google Scholar

    [12]

    Fatemi M, Wickenden A E, Koleske D D, Twigg M E, Freitas J A, Henry R L, Gorman R J 1998 Appl. Phys. Lett. 73 608Google Scholar

    [13]

    Shen X Q, Shimizu M, Okumura H 2003 Jpn. J. Appl. Phys. 42 L1293Google Scholar

    [14]

    Chang P C, Yu C L 2008 J. Electrochem. Soc. 155 H369Google Scholar

    [15]

    Zhang H C, Sun Y, Song K, et al. 2022 Appl. Phys. Lett. 119 072104Google Scholar

    [16]

    Fan X M, Bai J C, Xu S R, Zhang J C, Li P X, Peng R S, Zhao Y, Du J J, Shi X F, Hao Y 2018 Thin Solid Films 663 44Google Scholar

    [17]

    Shen X Q, Matsuhata H, Okumura H 2005 Appl. Phys. Lett. 86 021912Google Scholar

    [18]

    林志宇, 张进成, 许晟瑞, 吕玲, 刘子扬, 马俊彩, 薛晓咏, 薛军帅, 郝跃 2012 物理学报 61 186103Google Scholar

    Lin Z Y, Zhang J C, Xu S R, Lü L, Liu Z Y, Ma J C, Xue X Y, Xue J S, Hao Y 2012 Acta Phys. Sin. 61 186103Google Scholar

    [19]

    Chuang R W, Yu C L, Chang S J, Chang P C, Lin J C, Kuan T M 2007 J. Cryst. Growth 308 252Google Scholar

    [20]

    Xu Z H, Zhang J C, Zhang Z F, Zhu Q W, Duan H T, Hao Y 2009 Chin. Phys. B 18 5457Google Scholar

    [21]

    Sun H D, Mitra S, Subedi R C, et al. 2019 Adv. Funct. Mater. 29 1905445Google Scholar

    [22]

    Zhang H C, Sun Y, Song K, Xing C, Yang L, Wang D H, Yu H B, Xiang X Q, Gao N, Xu G W, Sun H D, Long S B 2021 Appl. Phys. Lett. 119 072104Google Scholar

    [23]

    Shen X Q, Furuta K, Nakamura N, Matsuhata H, Shimizu M, Okumura H 2007 J. Cryst. Growth 301 404Google Scholar

    [24]

    Chierchia R, Bottcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918Google Scholar

    [25]

    郝跃, 张金风, 张进成 2013 氮化物宽禁带半导体材料与电子器件(北京: 科学出版社) 第25页

    Hao Y, Zhang J F, Zhang J C 2013 Nitride Wide Bandgap Semiconductor Materials and Electronic Devices (Beijing: Science Press) p25

    [26]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654Google Scholar

    [27]

    Yu H B, Chen H, Li D S, Wang J, Xing Z G, Zheng X H, Huang Q, Zhou J M 2004 J. Cryst. Growth 266 455Google Scholar

    [28]

    Lee J H, Lee D Y, Oh B W, Lee J H 2010 IEEE Trans. Electron Devices 57 157Google Scholar

    [29]

    Kong B H, Sun Q, Han J, Lee I H, Cho H K 2012 Appl. Surf. Sci. 258 2522Google Scholar

    [30]

    Pakula K, Baranowski J M, Borysiuk J 2007 Cryst. Res. Technol. 42 1176Google Scholar

    [31]

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar

  • 图 1  四个样品的AFM测试图 (a) 样品A, RMS = 0.371 nm; (b) 样品B, RMS = 18.3 nm; (c) 样品C, RMS = 54.1 nm; (d) 样品D, RMS = 56.9 nm

    Fig. 1.  AFM images of four samples: (a) Sample A, RMS = 0.371 nm; (b) sample B, RMS = 18.3 nm; (c) sample C, RMS = 54.1 nm; (d) sample D, RMS = 56.9 nm.

    图 2  样品A, B, C, D的(002)面(a)和(102)面(b)的XRD摇摆曲线图

    Fig. 2.  XRD rocking curves of (002) (a) and (102) (b) of samples A, B, C and D.

    图 3  四个样品的室温下PL图(a)和局部放大图(b)

    Fig. 3.  PL images (a) and local enlarged images (b) of four samples at room temperature.

    图 4  样品D的TEM测试图 (a) g = [0002]; (b) $ g = $$ [ {11\bar 2 0} ] $

    Fig. 4.  TEM images of sample D: (a) g = [0002]; (b) $ g= $$ [ {11\bar 2 0} ] $.

    图 5  斜切衬底上GaN的生长过程及位错传播过程

    Fig. 5.  Growth process and dislocation spread of GaN on vicinal substrates.

    图 6  平面衬底上GaN的生长过程及位错传播过程

    Fig. 6.  Growth process and dislocation spread of GaN on planar substrates.

    表 1  样品A, B, C, D的RC曲线FWHM值和位错密度

    Table 1.  FWHM values and dislocation density of RC curves of samples A, B, C and D.

    样品 (002)面
    FWHM值/('')
    (102)面
    FWHM值/('')
    螺位错
    密度/(107 cm–2)
    刃位错
    密度/(108 cm–2)
    总位错
    密度/(108 cm–2)
    Sample A 235 282 11.0 4.20 5.30
    Sample B 221 274 9.76 3.97 4.94
    Sample C 196 251 7.69 3.33 4.11
    Sample D 165 240 5.47 3.07 3.62
    下载: 导出CSV
  • [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363Google Scholar

    [2]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [3]

    郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 物理学报 66 167301Google Scholar

    Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar

    [4]

    武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar

    Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar

    [5]

    Li G Q, Wang W L, Yang W J, Lin Y H, Wang H Y, Lin Z T, Zhou S Z 2016 Rep. Prog. Phys. 79 056501Google Scholar

    [6]

    Jena D, Mishra U K 2002 Appl. Phys. Lett. 80 64Google Scholar

    [7]

    刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃 2022 物理学报 71 057301Google Scholar

    Liu C, Li M, Wen Z, Gu Z Y, Yang M C, Liu W H, Han C Y, Zhang Y, Geng L, Hao Y 2022 Acta Phys. Sin. 71 057301Google Scholar

    [8]

    Zhou S J, Zhao X Y, Du P, Zhang Z Q, Liu X, Liu S, Guo A 2022 Nanoscale 14 4887Google Scholar

    [9]

    Kung P, Walker D, Hamilton N, Diaz J, Razeghi M 1999 Appl. Phys. Lett. 74 570Google Scholar

    [10]

    Zhao Y, Xu S R, Feng L S, Peng R S, Fan X M, Du J J, Su H K, Zhang J C, Hao Y 2022 Mater. Sci. Semicond. Process. 143 106535Google Scholar

    [11]

    Ni Y Q, He Z Y, Zhou D Q, Yao Y, Yang F, Zhou G L, Shen Z, Zhong J, Zhen Y, Zhang B J, Liu Y 2015 Superlattices Microstruct. 83 811Google Scholar

    [12]

    Fatemi M, Wickenden A E, Koleske D D, Twigg M E, Freitas J A, Henry R L, Gorman R J 1998 Appl. Phys. Lett. 73 608Google Scholar

    [13]

    Shen X Q, Shimizu M, Okumura H 2003 Jpn. J. Appl. Phys. 42 L1293Google Scholar

    [14]

    Chang P C, Yu C L 2008 J. Electrochem. Soc. 155 H369Google Scholar

    [15]

    Zhang H C, Sun Y, Song K, et al. 2022 Appl. Phys. Lett. 119 072104Google Scholar

    [16]

    Fan X M, Bai J C, Xu S R, Zhang J C, Li P X, Peng R S, Zhao Y, Du J J, Shi X F, Hao Y 2018 Thin Solid Films 663 44Google Scholar

    [17]

    Shen X Q, Matsuhata H, Okumura H 2005 Appl. Phys. Lett. 86 021912Google Scholar

    [18]

    林志宇, 张进成, 许晟瑞, 吕玲, 刘子扬, 马俊彩, 薛晓咏, 薛军帅, 郝跃 2012 物理学报 61 186103Google Scholar

    Lin Z Y, Zhang J C, Xu S R, Lü L, Liu Z Y, Ma J C, Xue X Y, Xue J S, Hao Y 2012 Acta Phys. Sin. 61 186103Google Scholar

    [19]

    Chuang R W, Yu C L, Chang S J, Chang P C, Lin J C, Kuan T M 2007 J. Cryst. Growth 308 252Google Scholar

    [20]

    Xu Z H, Zhang J C, Zhang Z F, Zhu Q W, Duan H T, Hao Y 2009 Chin. Phys. B 18 5457Google Scholar

    [21]

    Sun H D, Mitra S, Subedi R C, et al. 2019 Adv. Funct. Mater. 29 1905445Google Scholar

    [22]

    Zhang H C, Sun Y, Song K, Xing C, Yang L, Wang D H, Yu H B, Xiang X Q, Gao N, Xu G W, Sun H D, Long S B 2021 Appl. Phys. Lett. 119 072104Google Scholar

    [23]

    Shen X Q, Furuta K, Nakamura N, Matsuhata H, Shimizu M, Okumura H 2007 J. Cryst. Growth 301 404Google Scholar

    [24]

    Chierchia R, Bottcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918Google Scholar

    [25]

    郝跃, 张金风, 张进成 2013 氮化物宽禁带半导体材料与电子器件(北京: 科学出版社) 第25页

    Hao Y, Zhang J F, Zhang J C 2013 Nitride Wide Bandgap Semiconductor Materials and Electronic Devices (Beijing: Science Press) p25

    [26]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654Google Scholar

    [27]

    Yu H B, Chen H, Li D S, Wang J, Xing Z G, Zheng X H, Huang Q, Zhou J M 2004 J. Cryst. Growth 266 455Google Scholar

    [28]

    Lee J H, Lee D Y, Oh B W, Lee J H 2010 IEEE Trans. Electron Devices 57 157Google Scholar

    [29]

    Kong B H, Sun Q, Han J, Lee I H, Cho H K 2012 Appl. Surf. Sci. 258 2522Google Scholar

    [30]

    Pakula K, Baranowski J M, Borysiuk J 2007 Cryst. Res. Technol. 42 1176Google Scholar

    [31]

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar

  • [1] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [2] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [4] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [5] 林志宇, 张进成, 许晟瑞, 吕玲, 刘子扬, 马俊彩, 薛晓咏, 薛军帅, 郝跃. 斜切蓝宝石衬底MOCVD生长GaN薄膜的透射电镜研究. 物理学报, 2012, 61(18): 186103. doi: 10.7498/aps.61.186103
    [6] 乔建良, 常本康, 钱芸生, 高频, 王晓晖, 徐源. 负电子亲和势GaN真空面电子源研究进展. 物理学报, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [7] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [8] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [9] 乔建良, 田思, 常本康, 杜晓晴, 高频. 负电子亲和势GaN光电阴极激活机理研究. 物理学报, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [10] 熊传兵, 江风益, 方文卿, 王 立, 莫春兰. 硅衬底GaN蓝色发光材料转移前后应力变化研究. 物理学报, 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [11] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [12] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [13] 丁志博, 姚淑德, 王 坤, 程 凯. Si(111)衬底上生长有多缓冲层的六方GaN晶格常数计算和应变分析. 物理学报, 2006, 55(6): 2977-2981. doi: 10.7498/aps.55.2977
    [14] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [15] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [16] 徐彭寿, 邓锐, 潘海斌, 徐法强, 谢长坤, 李拥华, 刘凤琴, 易布拉欣·奎热西. GaN表面极性的光电子衍射研究. 物理学报, 2004, 53(4): 1171-1176. doi: 10.7498/aps.53.1171
    [17] 张进城, 郝跃, 李培咸, 范隆, 冯倩. 基于透射谱的GaN薄膜厚度测量. 物理学报, 2004, 53(4): 1243-1246. doi: 10.7498/aps.53.1243
    [18] 何军, 郑浩平. GaN及其Ga空位的电子结构. 物理学报, 2002, 51(11): 2580-2588. doi: 10.7498/aps.51.2580
    [19] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
    [20] 谢长坤, 徐法强, 邓锐, 徐彭寿, 刘凤琴, K.Yibulaxin. GaN(0001)表面的电子结构研究. 物理学报, 2002, 51(11): 2606-2611. doi: 10.7498/aps.51.2606
计量
  • 文章访问数:  3809
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-07-28
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-10-05

/

返回文章
返回