搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S型异质结MoSi2N4/GeC电子及光学特性的第一性原理研究

赵娜娜 王佳敏 袁志浩 崔真 任聪聪

引用本文:
Citation:

S型异质结MoSi2N4/GeC电子及光学特性的第一性原理研究

赵娜娜, 王佳敏, 袁志浩, 崔真, 任聪聪

First principles study of electronic and optical properties of S-type heterostructures MoSi2N4/GeC

Zhao Na-Na, Wang Jia-Min, Yuan Zhi-Hao, Cui Zhen, Ren Cong-Cong
PDF
HTML
导出引用
  • 采用第一性原理计算方法研究了MoSi2N4/GeC异质结, 对其进行结构、电子及光学特性的计算, 并探究施加不同双轴应变和垂直电场对异质结能带结构及光吸收特性的影响, 研究表明: MoSi2N4/GeC异质结是一种带隙为1.25 eV的间接带隙半导体, 具有由GeC层指向MoSi2N4层的内建电场. 此外, 其光生载流子转移机制符合S型异质结机理, 从而提高了光催化水分解的氧化还原电位, 使其满足pH = 0—14范围内的光催化水分解要求. 双轴应变下, 带隙随压缩应变的增加而先增大再减小, 且在紫外区域的光吸收性能随压缩应变的增加而增强. 带隙随拉伸应变的增大而减小, 且可见光区域的光吸收性能较压缩应变时增强. 垂直电场下, 带隙随正电场的的增加而增大, 随负电场的增大而减小. 综上, MoSi2N4/GeC异质结可以作为一种高效的光催化材料应用于光电器件及光催化等领域.
    In this article, the first principles calculation method is used to study the MoSi2N4/GeC heterostructures, and calculate its structural, electronic, and optical properties. And the effects of different biaxial strains and vertical electric fields on the band structure and optical absorption characteristics of the heterostructures are also investigated. MoSi2N4/GeC heterostructure is an indirect bandgap semiconductor with a bandgap of 1.25 eV, with the built-in electric field direction pointing from the GeC layer to the MoSi2N4 layer. In addition, its photogenerated carrier transfer mechanism conforms to the S-type heterostructures mechanism, thus improving the oxidation reduction potential of photocatalytic water decomposition, making it fully meet the requirements of photocatalytic water decomposition with pH = 0–14. Under biaxial strain, the band gap first increases and then decreases with the increase of compressive strain, and the light absorption performance in the ultraviolet region increases with compressive strain increasing. The band gap decreases as tensile strain increases, and the light absorption performance in the visible light region is enhanced in comparison with its counterpart under compressive strain. Under a vertical electric field, the band gap increases with positive electric field increasing, and decreases with negative electric field increasing. In summary, MoSi2N4/GeC heterostructures can be used as an efficient photocatalytic material in some fields such as optoelectronic devices and photocatalysis.
      通信作者: 赵娜娜, zhaonasam2007@163.com
    • 基金项目: 国家自然科学基金(批准号: 52274395, U20A20235)、陕西省重点研发计划(批准号: 2018ZDXM-GY-139)和中国博士后科学基金(批准号: 2018M633542)资助的课题.
      Corresponding author: Zhao Na-Na, zhaonasam2007@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52274395, U20A20235), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2018ZDXM-GY-139), and the China Postdoctoral Science Foundation (Grant No. 2018M633542).
    [1]

    熊子谦, 张鹏程, 康文斌, 方文玉 2020 物理学报 69 166301Google Scholar

    Xiong Z Q, Zhang P C, Kang W B, Fang W Y 2020 Acta Phys. Sin. 69 166301Google Scholar

    [2]

    Cai X F, Huang Y W, Hu J Z, Zhu S W, Tian X H, Zhang K, Ji G J, Zhang Y X, Fu Z D, Tan C L 2020 J. Catal. 10 1208Google Scholar

    [3]

    Yang K, Huang W Q, Xu L, Luo W K, Yang Y C, Huang G F 2016 Mater. Sci. Semicond. Process. 41 200Google Scholar

    [4]

    Sun Z Y, Xu J, Nsajigwa M, Yang W X, Wu X W, Yi Z, Chen S J, Zhang W B 2022 Commun. Theor. Phys. 74 015503Google Scholar

    [5]

    Bohayra M, Brahmanandam J, Fazel S, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar

    [6]

    Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun M D, Chen X Q, Cheng M H, Ren W C 2020 Science 369 670Google Scholar

    [7]

    Cao L M, Zhou G H, Wang Q Q, Ang L K, Ang Y S 2021 Appl. Phys. Lett. 8 013106

    [8]

    Li Y H, Ho W K, Lü K L, Zhu B C, Li C S 2018 Appl. Surf. Sci. 430 380Google Scholar

    [9]

    Zhu Z, Tang X, Wang T, Fan W Q, Liu Z, Li C X, Huo P W, Yan Y S 2018 Appl. Catal. B 241 319

    [10]

    Li S J, Li Y Y, Shao L X, Wang C D 2021 Chemistry Select 6 181

    [11]

    Chen H, Li Y, Huang L, Li J B 2015 J. Phys. Chem. C 119 29148Google Scholar

    [12]

    King’ori G W, Ouma C N M, Mishra A K, Amolo G O, Makau N W T 2020 RSC Adv. 10 30127Google Scholar

    [13]

    Chen Y C, Tang Z Y, Shan H L, Jiang B, Ding Y L, Luo X, Zheng Y 2021 Phys. Rev. B 104 075449Google Scholar

    [14]

    Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z 2019 Nanoscale Adv. 1 154Google Scholar

    [15]

    He Y, Zhang M, Shi J J, Cen Y L, Wu M 2019 J. Phys. Chem. C 123 12781

    [16]

    Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar

    [17]

    Jacobs D A, Langenhorst M, Sahli F, Richards B S, Paetzold U W 2019 J. Phys. Chem. Lett. 10 3159Google Scholar

    [18]

    He C, Zhang J H, Zhang W X, Li T T 2019 J. Phys. Chem. Lett. 10 3122Google Scholar

    [19]

    Fang L, Ni Y, Hu J S, Tong Z F, Ma X G, Lü H, Hou S C 2022 Phys. E 143 115321Google Scholar

    [20]

    Liu C Y, Wang Z W, Xiong W Q, Zhong H X, Yuan S J 2022 J. App. Phys. 131 163102Google Scholar

    [21]

    罗铖, 龙庆, 程蓓, 朱必成, 王临曦 2023 物理化学学报 39 2212026Google Scholar

    Luo C, Long Q, Cheng B, Zhu B C, Wang L X 2023 Acta Phys. Chim. Sin. 39 2212026Google Scholar

    [22]

    梅子慧, 王国宏, 严素定, 王娟 2021 物理化学学报 37 2009097Google Scholar

    Mei Z H, Wang G H, Yan S J, Wang J 2021 Acta Phys. Chim. Sin. 37 2009097Google Scholar

    [23]

    Dhakal K P, Roy S, Jang H, Chen X, Yun W S, Kim H, Lee J, Kim J, Ahn J H 2017 Chem. Mater. 29 5124Google Scholar

    [24]

    Ji Y J, Dong H L, Hou T J, Li Y Y 2018 J. Mater. Chem. A 6 2212Google Scholar

    [25]

    Fan X P, Jiang J W, Li R, Guo L, Mi W B 2022 Chem. Phys. Lett. 805 139968

    [26]

    Kresse G, Furthmüller J 1996 Comp. Mat. Sci. 54 11169Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Shi J Y, Ou Y, Max A M, Wang H Y, Li H, Zhang Y, Gu Y S, Zou M Q 2019 Comput. Mater. Sci. 160 301Google Scholar

    [30]

    Guo R, Luan L J, Cao M Y, Zhang Y, Wei X, Fan J B, Ni L, Liu C, Yang Y, Liu J, Tian Y, Duan L 2023 Phys. E 149 115628

    [31]

    Li R X, Tian X L, Zhu S C, Mao Q H, Ding J, Li H D 2022 Phys. E 144 115443

    [32]

    Yang F, Zhuo Z G, Han J N, Cao X C, Tao Y, Zhang L, Liu W J, Zhu Z Y, Dai Y H 2021 Superlattice. Microst. 156 106935

    [33]

    赵婷婷, 姚曼, 王旭东 2023 材料研究与应用 17 205Google Scholar

    Zhao T T, Yao M, Wang X D 2023 Mater. Res. Appl. 17 205Google Scholar

    [34]

    Bader R F W 1991 Chem. Rev. 91 893Google Scholar

    [35]

    栾丽君, 何易, 王涛, Liu Z W 2021 物理学报 70 166302Google Scholar

    Luan L J, He Y, Wang T, Liu Z W 2021 Acta Phys. Sin. 70 166302Google Scholar

    [36]

    Wang J Q, Cheng H, Wei D Q, Li Z H 2022 Chin. J. Cat. 43 2606Google Scholar

    [37]

    Zhu Y K, Zhuang Y, Wang L L, Tang H, Meng X F, She X L 2022 Chin. J. Cat. 43 2558Google Scholar

    [38]

    Zhao Z L, B J, Zhao L N, Wu H J, Xu S, Sun L, Li Z J, Zhang Z Q, Jing L Q 2022 Chin. J. Cat. 43 1331Google Scholar

    [39]

    Wang J, Wang G H, Cheng B, Yu J G, Fan J J 2021 Chin. J. Catal. 42 56Google Scholar

    [40]

    Luo J H, Lin Z X, Zhao Y, Jiang S J, Song S Q 2020 Chin. J. Catal. 41 130

    [41]

    Ye J X, Liu J W, An Y K 2020 Appl. Surf. Sci. 501 144262Google Scholar

    [42]

    刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能 2022 物理学报 71 097301Google Scholar

    Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022 Acta Phys. Sin. 71 097301Google Scholar

    [43]

    Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar

    [44]

    Wang Z, Zhang Y, Wei X, Guo T T, Fan J B, Ni L, Weng Y J, Zha Z D, Liu J, Tian Y, Li T, Duan L 2020 Phys. Chem. Chem. Phys. 22 9630Google Scholar

    [45]

    Li X R, Dai Y, Ma Y D, Han S H, Huang B B 2014 Phys. Chem. 16 4230Google Scholar

    [46]

    Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar

  • 图 1  MoSi2N4和GeC单层的俯视图和侧视图 (a) MoSi2N4; (b) GeC

    Fig. 1.  Top and side views of MoSi2N4 and GeC monolayer: (a) MoSi2N4; (b) GeC.

    图 2  各单层材料的能带结构 (a) MoSi2N4; (b) GeC

    Fig. 2.  Band structure of each monolayer material: (a) MoSi2N4; (b) GeC.

    图 3  不同堆垛方式的MoSi2N4/GeC vdWs异质结模型

    Fig. 3.  MoSi2N4/GeC vdWs heterostructure model with different stacking methods.

    图 4  MoSi2N4/GeC vdWs异质结的电子特性 (a) 能带结构; (b) CBM的局域电荷密度; (c) VBM的局域电荷密度

    Fig. 4.  Electronic properties of MoSi2N4/GeC vdWs heterostructure: (a) Band structure; (b) local charge density of CBM; (b) local charge density of VBM.

    图 5  MoSi2N4/GeC vdWs异质结沿Z方向的电子特性 (a) 静电势图 (蓝色虚线表示费米能级); (b) 平均平面电荷密度图 (插图是差分电荷密度图, 红色和黄色分别代表电荷的积累和消耗)

    Fig. 5.  Electronic properties of MoSi2N4/GeC vdWs heterostructure along Z direction: (a) Electrostatic potential diagram (Blue dotted line indicates Fermi energy level); (b) average plane charge density diagram (Inset is a differential charge density plot with red and yellow representing charge accumulation and consumption, respectively).

    图 6  S型MoSi2N4/GeC vdWs异质结光生载流子的转移机制

    Fig. 6.  Transfer mechanism of S-type MoSi2N4/GeC vdWs heterostructure photogenerated carriers.

    图 7  MoSi2N4, GeC和S型MoSi2N4/GeC vdWs异质结的光学特性 (a) 光吸收图谱; (b)在不同pH环境下的氧化还原电位

    Fig. 7.  Photocatalytic performance of MoSi2N4, GeC and MoSi2N4/GeC vdWs heterostructure: (a) Optical absorption spectra; (b) redox potential under different pH environments.

    图 8  MoSi2N4/GeC vdWs异质结在不同双轴应变(a)和垂直电场(b)下的带隙变化

    Fig. 8.  Band gap change of MoSi2N4/GeC vdWs heterostructure are applied with different biaxial strains (a) and vertical electric field (b).

    图 9  不同双轴应变下MoSi2N4/GeC vdWs异质结的能带结构 (a) ε = –8%; (b) ε = –6%; (c) ε = –4%; (d) ε = –2%; (e) ε = 2%; (f) ε = 4%; (g) ε = 6%; (h) ε = 8%

    Fig. 9.  Band structures of MoSi2N4/GeC vdWs heterostructure under different biaxial strains: (a) ε = –8%; (b) ε = –6%; (c) ε = –4%; (d) ε = –2%; (e) ε = 2%; (f) ε = 4%; (g) ε = 6%; (h) ε = 8%.

    图 10  不同电场下MoSi2N4/GeC vdWs异质结的能带结构 (a) E = –0.4 V/Å; (b) E = –0.3 V/Å; (c) E = –0.2 V/Å; (d) E = –0.1 V/Å; (e) E = 0.1 V/Å; (f) E = 0.2 V/Å; (g) E = 0.3 V/Å; (h) E = 0.4 V/Å

    Fig. 10.  Band structure of MoSi2N4/GeC vdWs heterostructures under different field: (a) E = –0.4 V/Å; (b) E = –0.3 V/Å; (c) E = –0.2 V/Å; (d) E = –0.1 V/Å; (e) E = 0.1 V/Å; (f) E = 0.2 V/Å; (g) E = 0.3 V/Å; (h) E = 0.4 V/Å.

    图 11  MoSi2N4/GeC vdWs异质结在不同双轴应变(a)和垂直电场(b)下的光吸收图谱

    Fig. 11.  Optical absorption spectra of MoSi2N4/GeC vdWs heterostructure under different biaxial strains (a) and vertical electric fields (b).

    表 1  MoSi2N4和GeC的带隙(Eg)、功函数(Φ)、晶格常数(a)以及Ge—C, Mo—N和两种不同Si—N的键长dg (T1T2分别代表两种不同的Si—N键键长)

    Table 1.  Band gap (Eg), work function (Φ), lattice constants (a) of MoSi2N4 and GeC and Ge—C, Mo—N and two different Si—N bond lengths (dg) (T1 and T2 represent two different Si—N bond lengths, respectively).

    Eg/eV Φ/eV a dg
    Ge—C Mo—N T1 T2
    MoSi2N4 1.80 5.20 2.910 2.096 1.747 1.755
    GeC 2.07 4.63 3.265 1.883
    下载: 导出CSV
  • [1]

    熊子谦, 张鹏程, 康文斌, 方文玉 2020 物理学报 69 166301Google Scholar

    Xiong Z Q, Zhang P C, Kang W B, Fang W Y 2020 Acta Phys. Sin. 69 166301Google Scholar

    [2]

    Cai X F, Huang Y W, Hu J Z, Zhu S W, Tian X H, Zhang K, Ji G J, Zhang Y X, Fu Z D, Tan C L 2020 J. Catal. 10 1208Google Scholar

    [3]

    Yang K, Huang W Q, Xu L, Luo W K, Yang Y C, Huang G F 2016 Mater. Sci. Semicond. Process. 41 200Google Scholar

    [4]

    Sun Z Y, Xu J, Nsajigwa M, Yang W X, Wu X W, Yi Z, Chen S J, Zhang W B 2022 Commun. Theor. Phys. 74 015503Google Scholar

    [5]

    Bohayra M, Brahmanandam J, Fazel S, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar

    [6]

    Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun M D, Chen X Q, Cheng M H, Ren W C 2020 Science 369 670Google Scholar

    [7]

    Cao L M, Zhou G H, Wang Q Q, Ang L K, Ang Y S 2021 Appl. Phys. Lett. 8 013106

    [8]

    Li Y H, Ho W K, Lü K L, Zhu B C, Li C S 2018 Appl. Surf. Sci. 430 380Google Scholar

    [9]

    Zhu Z, Tang X, Wang T, Fan W Q, Liu Z, Li C X, Huo P W, Yan Y S 2018 Appl. Catal. B 241 319

    [10]

    Li S J, Li Y Y, Shao L X, Wang C D 2021 Chemistry Select 6 181

    [11]

    Chen H, Li Y, Huang L, Li J B 2015 J. Phys. Chem. C 119 29148Google Scholar

    [12]

    King’ori G W, Ouma C N M, Mishra A K, Amolo G O, Makau N W T 2020 RSC Adv. 10 30127Google Scholar

    [13]

    Chen Y C, Tang Z Y, Shan H L, Jiang B, Ding Y L, Luo X, Zheng Y 2021 Phys. Rev. B 104 075449Google Scholar

    [14]

    Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z 2019 Nanoscale Adv. 1 154Google Scholar

    [15]

    He Y, Zhang M, Shi J J, Cen Y L, Wu M 2019 J. Phys. Chem. C 123 12781

    [16]

    Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar

    [17]

    Jacobs D A, Langenhorst M, Sahli F, Richards B S, Paetzold U W 2019 J. Phys. Chem. Lett. 10 3159Google Scholar

    [18]

    He C, Zhang J H, Zhang W X, Li T T 2019 J. Phys. Chem. Lett. 10 3122Google Scholar

    [19]

    Fang L, Ni Y, Hu J S, Tong Z F, Ma X G, Lü H, Hou S C 2022 Phys. E 143 115321Google Scholar

    [20]

    Liu C Y, Wang Z W, Xiong W Q, Zhong H X, Yuan S J 2022 J. App. Phys. 131 163102Google Scholar

    [21]

    罗铖, 龙庆, 程蓓, 朱必成, 王临曦 2023 物理化学学报 39 2212026Google Scholar

    Luo C, Long Q, Cheng B, Zhu B C, Wang L X 2023 Acta Phys. Chim. Sin. 39 2212026Google Scholar

    [22]

    梅子慧, 王国宏, 严素定, 王娟 2021 物理化学学报 37 2009097Google Scholar

    Mei Z H, Wang G H, Yan S J, Wang J 2021 Acta Phys. Chim. Sin. 37 2009097Google Scholar

    [23]

    Dhakal K P, Roy S, Jang H, Chen X, Yun W S, Kim H, Lee J, Kim J, Ahn J H 2017 Chem. Mater. 29 5124Google Scholar

    [24]

    Ji Y J, Dong H L, Hou T J, Li Y Y 2018 J. Mater. Chem. A 6 2212Google Scholar

    [25]

    Fan X P, Jiang J W, Li R, Guo L, Mi W B 2022 Chem. Phys. Lett. 805 139968

    [26]

    Kresse G, Furthmüller J 1996 Comp. Mat. Sci. 54 11169Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Shi J Y, Ou Y, Max A M, Wang H Y, Li H, Zhang Y, Gu Y S, Zou M Q 2019 Comput. Mater. Sci. 160 301Google Scholar

    [30]

    Guo R, Luan L J, Cao M Y, Zhang Y, Wei X, Fan J B, Ni L, Liu C, Yang Y, Liu J, Tian Y, Duan L 2023 Phys. E 149 115628

    [31]

    Li R X, Tian X L, Zhu S C, Mao Q H, Ding J, Li H D 2022 Phys. E 144 115443

    [32]

    Yang F, Zhuo Z G, Han J N, Cao X C, Tao Y, Zhang L, Liu W J, Zhu Z Y, Dai Y H 2021 Superlattice. Microst. 156 106935

    [33]

    赵婷婷, 姚曼, 王旭东 2023 材料研究与应用 17 205Google Scholar

    Zhao T T, Yao M, Wang X D 2023 Mater. Res. Appl. 17 205Google Scholar

    [34]

    Bader R F W 1991 Chem. Rev. 91 893Google Scholar

    [35]

    栾丽君, 何易, 王涛, Liu Z W 2021 物理学报 70 166302Google Scholar

    Luan L J, He Y, Wang T, Liu Z W 2021 Acta Phys. Sin. 70 166302Google Scholar

    [36]

    Wang J Q, Cheng H, Wei D Q, Li Z H 2022 Chin. J. Cat. 43 2606Google Scholar

    [37]

    Zhu Y K, Zhuang Y, Wang L L, Tang H, Meng X F, She X L 2022 Chin. J. Cat. 43 2558Google Scholar

    [38]

    Zhao Z L, B J, Zhao L N, Wu H J, Xu S, Sun L, Li Z J, Zhang Z Q, Jing L Q 2022 Chin. J. Cat. 43 1331Google Scholar

    [39]

    Wang J, Wang G H, Cheng B, Yu J G, Fan J J 2021 Chin. J. Catal. 42 56Google Scholar

    [40]

    Luo J H, Lin Z X, Zhao Y, Jiang S J, Song S Q 2020 Chin. J. Catal. 41 130

    [41]

    Ye J X, Liu J W, An Y K 2020 Appl. Surf. Sci. 501 144262Google Scholar

    [42]

    刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能 2022 物理学报 71 097301Google Scholar

    Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022 Acta Phys. Sin. 71 097301Google Scholar

    [43]

    Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar

    [44]

    Wang Z, Zhang Y, Wei X, Guo T T, Fan J B, Ni L, Weng Y J, Zha Z D, Liu J, Tian Y, Li T, Duan L 2020 Phys. Chem. Chem. Phys. 22 9630Google Scholar

    [45]

    Li X R, Dai Y, Ma Y D, Han S H, Huang B B 2014 Phys. Chem. 16 4230Google Scholar

    [46]

    Bai K F, Cui Z, Li E L, Ding Y C, Zheng J S, Liu C, Zheng Y P 2020 Vacuum 180 109562Google Scholar

  • [1] 李春熠, 莫子夜, 鲁兴业. 铁基超导研究中的单轴应变调控方法. 物理学报, 2024, 73(19): 197103. doi: 10.7498/aps.73.20241080
    [2] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变. 物理学报, 2023, 72(12): 127102. doi: 10.7498/aps.72.20230043
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [4] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [5] 石蓓蓓, 陶广益, 戴宇琛, 何霄, 林峰, 张酣, 方哲宇. 电场调控双层WSe2转角同质结激子莫尔势. 物理学报, 2022, 71(17): 177301. doi: 10.7498/aps.71.20220664
    [6] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [7] 梁前, 钱国林, 罗祥燕, 梁永超, 谢泉. 外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控. 物理学报, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [8] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [9] 林翠, 白刚, 李卫, 高存法. 外延PbZr0.2Ti0.8O3薄膜负电容的应变调控. 物理学报, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [10] 李永宁, 谢逸群, 王音. 二维铁电In2Se3/InSe垂直异质结能带的应力调控. 物理学报, 2021, 70(22): 227701. doi: 10.7498/aps.70.20211158
    [11] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [12] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [13] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [14] 周广正, 李颖, 兰天, 代京京, 王聪聪, 王智勇. 垂直腔面发射激光器与异质结双极型晶体管集成结构的设计和模拟. 物理学报, 2019, 68(20): 204203. doi: 10.7498/aps.68.20190529
    [15] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [16] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [17] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [18] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [19] 张杭波, 吴化平, 周挺, 张征, 柴国钟. 面外应变对1-3型垂直异质P(VDF-TrFE)基复合薄膜电热性能的调控. 物理学报, 2013, 62(24): 247701. doi: 10.7498/aps.62.247701
    [20] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
计量
  • 文章访问数:  3032
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-08-18
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-10-05

/

返回文章
返回