搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋白质pKa预测模型研究进展

罗方芳 蔡志涛 黄艳东

引用本文:
Citation:

蛋白质pKa预测模型研究进展

罗方芳, 蔡志涛, 黄艳东

Progress in protein pKa prediction

Luo Fang-Fang, Cai Zhi-Tao, Huang Yan-Dong
PDF
HTML
导出引用
  • pH表征溶液的酸碱性, 是许多与人类重大疾病密切相关的生命活动的调控因子. $ {\mathrm{p}}{K}_{{\mathrm{a}}} $决定可滴定基团在一定pH条件下的去质子化平衡, 是研究pH调控的生物化学过程的重要参量. 然而, 由于蛋白质结构的复杂性以及实验条件的限制, 蛋白质$ {\mathrm{p}}{K}_{{\mathrm{a}}} $通常需要借助理论预测. 近30年, 研究者们开发了各种基于先验知识的$ {\mathrm{p}}{K}_{{\mathrm{a}}} $预测模型. 随着近几年人工智能技术的快速发展, 人们开始尝试将人工智能算法应用于蛋白质$ {\mathrm{p}}{K}_{{\mathrm{a}}} $预测工具的开发. 本文介绍$ {\mathrm{p}}{K}_{{\mathrm{a}}} $理论预测近年来的一些重要研究进展, 主要包括恒定pH分子动力学以及基于泊松-玻尔兹曼方程、经验函数和机器学习的$ {\mathrm{p}}{K}_{{\mathrm{a}}} $预测模型. 在此基础上, 讨论蛋白质$ {\mathrm{p}}{K}_{{\mathrm{a}}} $预测模型的未来发展方向和应用前景.
    The pH value represents the acidity of the solution and plays a key role in many life events linked to human diseases. For instance, the β-site amyloid precursor protein cleavage enzyme, BACE1, which is a major therapeutic target of treating Alzheimer’s disease, functions within a narrow pH region around 4.5. In addition, the sodium-proton antiporter NhaA from Escherichia coli is activated only when the cytoplasmic pH is higher than 6.5 and the activity reaches a maximum value around pH 8.8. To explore the molecular mechanism of a protein regulated by pH, it is important to measure, typically by nuclear magnetic resonance, the binding affinities of protons to ionizable key residues, namely $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ values, which determine the deprotonation equilibria under a pH condition. However, wet-lab experiments are often expensive and time consuming. In some cases, owing to the structural complexity of a protein, $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ measurements become difficult, making theoretical $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ predictions in a dry laboratory more advantageous. In the past thirty years, many efforts have been made to accurately and fast predict protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ with physics-based methods. Theoretically, constant pH molecular dynamics (CpHMD) method that takes conformational fluctuations into account gives the most accurate predictions, especially the explicit-solvent CpHMD model proposed by Huang and coworkers (2016 J. Chem. Theory Comput. 12 5411) which in principle is applicable to any system that can be described by a force field. However, lengthy molecular simulations are usually necessary for the extensive sampling of conformation. In particular, the computational complexity increases significantly if water molecules are included explicitly in the simulation system. Thus, CpHMD is not suitable for high-throughout computing requested in industry circle. To accelerate $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ prediction, Poisson-Boltzmann (PB) or empirical equation-based schemes, such as H++ and PropKa, have been developed and widely used where $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ values are obtained via one-structure calculations. Recently, artificial intelligence (AI) is applied to the area of protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ prediction, which leads to the development of DeepKa by Huang laboratory (2021 ACS Omega 6 34823), the first AI-driven $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ predictor. In this paper, we review the advances in protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ prediction contributed mainly by CpHMD methods, PB or empirical equation-based schemes, and AI models. Notably, the modeling hypotheses explained in the review would shed light on future development of more powerful protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ predictors.
      通信作者: 黄艳东, yandonghuang@jmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804114, 62006096)、福建省自然科学基金(批准号: 2023J01329, 2020J05146)、厦门市自然科学基金(批准号: 3502Z20227205)和集美大学校启动金(批准号: ZQ2020027)资助的课题.
      Corresponding author: Huang Yan-Dong, yandonghuang@jmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804114, 62006096), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2023J01329, 2020J05146), the Natural Science Foundation of Xiamen, China (Grant No. 3502Z20227205), and the Scientific Starting Research Foundation of Jimei University, China (Grant No. ZQ2020027).
    [1]

    Casey J R, Grinstein S, Orlowski J 2010 Nat. Rev. Mol. Cell Biol. 11 50Google Scholar

    [2]

    Qian H, Wu X L, Du X M, Yao X, Zhao X, Lee J, Yang H Y, Yan N 2020 Cell 182 98Google Scholar

    [3]

    Yang G H, Zhou R, Zhou Q, Guo X F, Yan C Y, Ke M, Lei J L, Shi Y G 2019 Nature 565 192Google Scholar

    [4]

    Chung H S, Piana-Agostinetti S, Shaw D E, Eaton W A 2015 Science 349 1504Google Scholar

    [5]

    Nasica-Labouze J, Nguyen P H, Sterpone F, Berthoumieu O, Buchete N, Cote S, Simone A D, Doig A J, Faller P, Garcia A, Laio A, Li M S, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman D J, Strodel B, Tarus B, Viles J H, Zhang T, Wang C, Derreumaux P 2015 Chem. Rev. 115 3518Google Scholar

    [6]

    Morrow B H, Payne G F, Shen J 2015 J. Am. Chem. Soc. 137 13024Google Scholar

    [7]

    Kumar A, Hossain R A, Yost S A, Bu W, Wang Y, Dearborn A D, Grakoui A, Cohen J I, Marcotrigiano J 2021 Nature 598 521Google Scholar

    [8]

    Singharoy A, Maffeo C, Delgado-Magnero K H, Swainsbury D J K, Sener M, Kleinekathofer U, Vant J W, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler D E, Stone J E, Phillips J C, Pogorelov T V, Mallus M I, Chipot C, Luthey-Schulten Z, Tieleman D P, Hunter C N, Schulten K 2019 Cell 179 1098Google Scholar

    [9]

    Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N 2008 Mol. Cell Biol. 28 3663Google Scholar

    [10]

    Ellis C R, Shen J 2015 J. Am. Chem. Soc. 137 9543Google Scholar

    [11]

    Thurlkill R L, Grimsley G R, Scholtz J M, Pace C N 2006 Protein Sci. 15 1214Google Scholar

    [12]

    Jensen J H, Li H, Robertson A D, Molina P A 2005 J. Phys. Chem. A 109 6634Google Scholar

    [13]

    Baptista A M, Martel P J, Petersen S B 1997 Proteins 27 523Google Scholar

    [14]

    Shi C, Wallace J A, Shen J K 2012 Biophys. J. 102 1590Google Scholar

    [15]

    Qing R, Hao S L, Smorodina E, Jin D, Zalevsky A, Zhang S G 2022 Chem. Rev. 122 14085Google Scholar

    [16]

    Henderson J A, Liu R, Harris J A, Huang Y D, de Oliveria V M, Shen J D 2022 Liv. J. Comput. Mol. 4 1563Google Scholar

    [17]

    Georgescu R E, Alexov E G, Gunner M R 2002 Biophys. J. 83 1731Google Scholar

    [18]

    Anandakrishnan R, Aguilar B, Onufriev A V 2012 Nucleic Acids Res. 40 W537Google Scholar

    [19]

    Dolinsky T J, Nielsen J E, McCammon J A, Baker N A 2004 Nucleic Acids Res. 32 665Google Scholar

    [20]

    Wang L, Li L, Alexov E 2015 Proteins. 83 2186Google Scholar

    [21]

    Reis Pedro B P S, Vila-Viçosa D, Rocchia W, Machuqueiro M 2020 J. Chem. Inf. Model. 60 4442Google Scholar

    [22]

    Huang Y D, Yue Z, Tsai C C, Henderson J A, Shen J 2018 J. Phys. Chem. Lett. 9 1179Google Scholar

    [23]

    Li H, Robertson A D, Jensen J H 2005 Proteins 61 704Google Scholar

    [24]

    Olsson Mats H M, Søndergaard C R, Rostkowski M, Jensen J H 2011 J. Chem. Theory Comput. 7 525Google Scholar

    [25]

    Cai Z T, Luo F F, Wang Y X, Li E L, Huang Y D 2021 ACS Omega 6 34823Google Scholar

    [26]

    Gokcan H, Lsayev O 2022 Chem. Sci. 13 2462Google Scholar

    [27]

    Chen A Y, Lee J, Damjanovic Ana, Brooks B R 2022 J. Chem. Theory Comput. 184 2673Google Scholar

    [28]

    Reis Pedro B P S, Bertolini M, Montanari F, Rocchia W, Machuqueiro M, Clevert D A 2022 J. Chem. Theory Comput. 18 5068Google Scholar

    [29]

    Cai Z T, Liu T Z, Lin Q L, He J H, Lei X W, Luo F F, Huang Y D 2023 J. Chem. Inf. Model 63 2936Google Scholar

    [30]

    Baptista A M, Teixeira V H, Soares C M 2002 J. Chem. Phys. 117 4184Google Scholar

    [31]

    Lee M S, Salsbury F R, Brooks Ⅲ C L 2004 Proteins 56 738Google Scholar

    [32]

    Mongan J, Case D A, McCammon J A 2004 J. Comput. Chem. 25 2038Google Scholar

    [33]

    Meng Y, Roitberg A E 2010 J. Chem. Theory Comput. 6 1401Google Scholar

    [34]

    Swails J M, York D M, Roitberg A E 2014 J. Chem. Theory Comput. 10 1341Google Scholar

    [35]

    Machuqueiro M, Baptista A M 2006 J. Phys. Chem. B 110 2927Google Scholar

    [36]

    Sequeira J G N, Rodrigues F E P, Silva T G D, Reis Pedro B P S, Machuqueiro M 2022 J. Phys. Chem. B. 126 7870Google Scholar

    [37]

    Huang Y D, Chen W, Dotson D L, Beckstein O, Shen J 2016 Nat. Commun. 7 12940Google Scholar

    [38]

    Stern H A 2007 J. Chem. Phys. 126 164112Google Scholar

    [39]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [40]

    Chen Y, Roux B 2015 J. Chem. Theory Comput. 11 3919Google Scholar

    [41]

    Radak B K, Chipot C, Suh D, Jo S, Jiang W, Philips J C, Schulten K, Roux B 2017 J. Chem. Theory Comput. 13 5933Google Scholar

    [42]

    Wang R X, Fang X L, Lu Y P, Yang C Y, Wang S M 2005 J. Med. Chem. 48 4111Google Scholar

    [43]

    Pieri E, Ledentu V, Sahlin M, Dehez F, Olivucci M, Ferre N 2019 J. Chem. Theory Comput. 15 4535Google Scholar

    [44]

    de Oliveria V M, Liu R, Shen J 2022 Curr. Opin. Struct. Biol. 77 102498Google Scholar

    [45]

    Kong X, Brooks III C L 1996 J. Chem. Phys. 105 2414Google Scholar

    [46]

    Khandogin J, Brooks Ⅲ C L 2005 Biophys. J. 89 141Google Scholar

    [47]

    Nguyen H, Maier J, Huang H, Perrone V, Simmerling C 2014 J. Am. Chem. Soc. 136 13959Google Scholar

    [48]

    Huang Y D, Harris R C, Shen J 2018 J. Chem. Inf. Model. 58 1372Google Scholar

    [49]

    Liu R, Yue Z, Tsai C C, Shen J 2019 J. Am. Chem. Soc. 141 6553Google Scholar

    [50]

    Harris R C, Liu R, Shen, J 2020 J. Chem. Theory Comput. 16 3689Google Scholar

    [51]

    Liu R, Zhan S, Che Y, Shen J 2022 J. Med. Chem. 65 1525Google Scholar

    [52]

    Yao X, Chen C, Wang Y, Dong S, Liu Y, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer E A, Cui Q, Feng Y 2020 Sci. Adv. 6 eabd7182Google Scholar

    [53]

    Verma N, Henderson J A, Shen J 2020 J. Am. Chem Soc. 142 21883Google Scholar

    [54]

    Arthur E J, Brooks III C L 2016 J. Comput. Chem. 37 2171Google Scholar

    [55]

    Harris R C, Shen J 2019 J. Chem. Inf. Model. 59 4821Google Scholar

    [56]

    Wallace J A, Shen J K 2011 J. Chem. Theory Comput. 7 2617Google Scholar

    [57]

    Henderson J A, Huang Y D, Beckstein O, Shen J 2020 Proc. Natl. Acad. Sci. U. S. A. 117 25517Google Scholar

    [58]

    Chen W, Huang Y D, Shen J 2016 J. Phys. Chem. Lett. 7 3961Google Scholar

    [59]

    Yue Z, Li C, Voth G A, Swanson J M J 2019 J. Am. Chem. Soc. 141 13421Google Scholar

    [60]

    Vo Q N, Mahinthichaichan P, Shen J, Ellis C R 2021 Nat. Commun. 12 984Google Scholar

    [61]

    Li Z, Zhang X, Wang Q, Li C, Zhang N, Zhang X, Xu B, Ma B, Schrader T E, Coates L, Kovalevsky A, Huang Y D, Wan Q 2018 ACS Catal. 8 8058Google Scholar

    [62]

    Tsai C C, Yue Z, Shen J 2019 J. Am. Chem. Soc. 141 15092Google Scholar

    [63]

    Goh G B, Knight J L, Brooks III C L 2012 J. Chem. Theory Comput. 8 36Google Scholar

    [64]

    Wallace J A, Shen J K 2012 J. Chem. Phys. 137 184105Google Scholar

    [65]

    Chen W, Shen J K 2014 J. Comput. Chem. 35 1986Google Scholar

    [66]

    Huang Y D, Chen W, Wallace J A, Shen J 2016 J. Chem. Theory Comput. 12 5411Google Scholar

    [67]

    Harris J A, Liu R, de Oliveira V M, Vázquez-Montelongo E A, Henderson J A, Shen J 2022 J. Chem. Theory Comput. 18 7510Google Scholar

    [68]

    Chen W, Wallace J A, Yue Z, Shen J K 2013 Biophys. J. 105 L15Google Scholar

    [69]

    Wallace J A, Shen J K 2009 Methods Enzymol. 466 455Google Scholar

    [70]

    Ullmann G M 2003 J. Phys. Chem. B 107 1263Google Scholar

    [71]

    Goh G B, Hulbert B S, Zhou H, Brooks Ⅲ C L 2014 Proteins 82 1319Google Scholar

    [72]

    Webb H, Tynan-Connolly B M, Lee G M, Farrell D, O’Meara F, Sondergaard C R, Teilum K, Hewage C, Mclntosh L P, Nielsen J E 2010 Proteins 79 685-702Google Scholar

    [73]

    Rocklin G J, Mobley D L, Dill K A, Hunenberger P H 2013 J. Chem. Phys. 139 184103Google Scholar

    [74]

    Bignucolo O, Chipot C, Kellenberger S, Roux B 2022 J. Phys. Chem. B. 126 6868Google Scholar

    [75]

    Donnini S, Tegeler F, Groenhof G, Grubmüller H 2011 J. Chem. Theory Comput. 7 1962Google Scholar

    [76]

    Aho N, Buslaev P, Jansen A, Bauer P, Groenhof G, Hess B 2022 J. Chem. Theory Comput. 18 6148Google Scholar

    [77]

    Buslaev P, Aho N, Jansen A, Bauer P, Hess B, Groenhof G 2022 J. Chem. Theory Comput. 18 6134Google Scholar

    [78]

    Knight J L, Brooks Ⅲ C L 2011 J. Comput. Chem. 32 3423Google Scholar

    [79]

    Donnini S, Ullmann R T, Groenhof G, Grubmüller H 2016 J. Chem. Theory Comput. 12 1040Google Scholar

    [80]

    Huang Y D, Shuai J 2013 J. Phys. Chem. B 117 6138Google Scholar

    [81]

    Lemkul J A, Huang J, Roux B, MacKerell A D 2016 Chem. Rev. 116 4983Google Scholar

    [82]

    Khandogin J, Brooks Ⅲ C L 2006 Biochemistry 45 9363Google Scholar

    [83]

    Itoh S G, Damjanović A, Brooks B R 2011 Proteins 79 3420Google Scholar

    [84]

    Dashti D S, Meng Y, Roitberg A E 2012 J. Phys. Chem. B. 116 8805Google Scholar

    [85]

    Swails J M, Roitberg A E 2012 J. Chem. Theory Comput. 8 4393Google Scholar

    [86]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2015 J. Chem. Theory Comput. 11 2560Google Scholar

    [87]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2014 J. Chem. Theory Comput. 10 2738Google Scholar

    [88]

    Henderson J A, Verma N, Harris R, Shen J 2020 J. Chem. Phys. 153 115101Google Scholar

    [89]

    Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid A E, Kolinski A 2016 Chem. Rev. 116 7898Google Scholar

    [90]

    Bennett W D, Chen A W, Donnini S, Groenhof G, Tieleman D P 2013 Can. J. Chem. 91 839Google Scholar

    [91]

    da Silva F L B, Sterpone F, Derreumaux P 2019 J. Chem. Theory Comput. 15 3875Google Scholar

    [92]

    Crünewald F, Souza P C T, Abdizadeh H, Barnoud J, de Vries A H, Marrink S J 2020 J. Chem. Phys. 153 024118Google Scholar

    [93]

    Reilley D J, Wang J, Dokholyan N V, Alexandrova A N 2021 J. Chem. Theory Comput. 17 4583Google Scholar

    [94]

    Song Y, Mao J, Gunner M R 2009 J. Comput. Chem. 30 2231Google Scholar

    [95]

    Wang L, Zhang M, Alexov E 2016 Bioinformatics 32 614Google Scholar

    [96]

    Pahari S, Sun L, Basu S, Alexov E 2018 Proteins 86 1277Google Scholar

    [97]

    Bas D C, Rogers D M, Jensen J H 2008 Proteins 73 765Google Scholar

    [98]

    Sun Z, Wang X, Song J 2017 J. Chem Inf. Model. 57 1621Google Scholar

    [99]

    Stepniewska-Dziubinska M M, Zielenkiewicz P, Siedlecki P 2018 Bioinformatics 34 3666Google Scholar

    [100]

    Pahari S, Sun L, Alexov E 2019 Database 2019 baz024Google Scholar

    [101]

    Ancona N, Bastola A, Alexov E 2023 J. Comput. Biophys. Chem. 22 515Google Scholar

    [102]

    Reis Pedro B P S, Clevert D A, Machuqueiro M 2022 Bioinformatics 38 297

    [103]

    Wei W, Hogues H, Sulea T 2023 J. Chem. Inf. Model. 63 5169Google Scholar

    [104]

    Coskun D, Chen W, Clark A J, Lu C, Hardr E D, Wang L, Friesner R A, Miller E B 2022 J. Chem. Theory Comput. 18 7193Google Scholar

    [105]

    Hagg A, Kirschner K N 2023 J. Chem. Inf. Model. 63 4505Google Scholar

    [106]

    Bueschbell B, Caniceiro A B, Suzano P M S, Machuqueiro M, Rosário-Ferreira N, Moreira I S 2022 Drug Resist. Updat. 60 100811Google Scholar

  • 图 1  BACE1催化中心质子化态和功能的关系 (a) BACE1三维结构及其催化中心酸性二分体D32和D228; (b) D32和D228质子化态和蛋白质活性随pH的变化规律(D是Asp的缩写)

    Fig. 1.  Relationship between protonation state of BACE1 catalytic center and the function: (a) Crystal structure of BACE1 and the acidic dyad in the catalytic center; (b) protonation states of D32 and D228 and the activity as a function of pH (D is the abbreviation of Asp).

    图 2  CpHMD模拟框架

    Fig. 2.  Framework of a CpHMD simulation.

    图 3  互变异构滴定模型的3个质子化态以及状态间的转化 (a)天冬氨酸Asp; (b)组氨酸His

    Fig. 3.  Three protonation states and their interconversion in the tautomeric titration model: (a) Aspartic acid; (b) histidine.

    图 4  基于C-CpHMD的$ {\mathrm{p}}{K}_{{\mathrm{a}}} $计算 (a)滴定坐标λ和去质子化概率S的轨迹; (b)采用Hill函数拟合S

    Fig. 4.  The $ \text{p}{{{K}}}_{{\mathrm{a}}} $ calculation based on C-CpHMD: (a) Trajectories of titration coordinate λ and deprotonation fraction S; (b) fitting S to Hill function.

    图 5  相对去质子化自由能计算的热力学循环

    Fig. 5.  Thermodynamic cycle of relative deprotonation free energy calculation.

    图 6  $ \text{p}{K}_{{\mathrm{a}}} $预测模型性能对比

    Fig. 6.  Comparison of existing $ \text{p}{K}_{{\mathrm{a}}} $ predictors.

  • [1]

    Casey J R, Grinstein S, Orlowski J 2010 Nat. Rev. Mol. Cell Biol. 11 50Google Scholar

    [2]

    Qian H, Wu X L, Du X M, Yao X, Zhao X, Lee J, Yang H Y, Yan N 2020 Cell 182 98Google Scholar

    [3]

    Yang G H, Zhou R, Zhou Q, Guo X F, Yan C Y, Ke M, Lei J L, Shi Y G 2019 Nature 565 192Google Scholar

    [4]

    Chung H S, Piana-Agostinetti S, Shaw D E, Eaton W A 2015 Science 349 1504Google Scholar

    [5]

    Nasica-Labouze J, Nguyen P H, Sterpone F, Berthoumieu O, Buchete N, Cote S, Simone A D, Doig A J, Faller P, Garcia A, Laio A, Li M S, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman D J, Strodel B, Tarus B, Viles J H, Zhang T, Wang C, Derreumaux P 2015 Chem. Rev. 115 3518Google Scholar

    [6]

    Morrow B H, Payne G F, Shen J 2015 J. Am. Chem. Soc. 137 13024Google Scholar

    [7]

    Kumar A, Hossain R A, Yost S A, Bu W, Wang Y, Dearborn A D, Grakoui A, Cohen J I, Marcotrigiano J 2021 Nature 598 521Google Scholar

    [8]

    Singharoy A, Maffeo C, Delgado-Magnero K H, Swainsbury D J K, Sener M, Kleinekathofer U, Vant J W, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler D E, Stone J E, Phillips J C, Pogorelov T V, Mallus M I, Chipot C, Luthey-Schulten Z, Tieleman D P, Hunter C N, Schulten K 2019 Cell 179 1098Google Scholar

    [9]

    Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N 2008 Mol. Cell Biol. 28 3663Google Scholar

    [10]

    Ellis C R, Shen J 2015 J. Am. Chem. Soc. 137 9543Google Scholar

    [11]

    Thurlkill R L, Grimsley G R, Scholtz J M, Pace C N 2006 Protein Sci. 15 1214Google Scholar

    [12]

    Jensen J H, Li H, Robertson A D, Molina P A 2005 J. Phys. Chem. A 109 6634Google Scholar

    [13]

    Baptista A M, Martel P J, Petersen S B 1997 Proteins 27 523Google Scholar

    [14]

    Shi C, Wallace J A, Shen J K 2012 Biophys. J. 102 1590Google Scholar

    [15]

    Qing R, Hao S L, Smorodina E, Jin D, Zalevsky A, Zhang S G 2022 Chem. Rev. 122 14085Google Scholar

    [16]

    Henderson J A, Liu R, Harris J A, Huang Y D, de Oliveria V M, Shen J D 2022 Liv. J. Comput. Mol. 4 1563Google Scholar

    [17]

    Georgescu R E, Alexov E G, Gunner M R 2002 Biophys. J. 83 1731Google Scholar

    [18]

    Anandakrishnan R, Aguilar B, Onufriev A V 2012 Nucleic Acids Res. 40 W537Google Scholar

    [19]

    Dolinsky T J, Nielsen J E, McCammon J A, Baker N A 2004 Nucleic Acids Res. 32 665Google Scholar

    [20]

    Wang L, Li L, Alexov E 2015 Proteins. 83 2186Google Scholar

    [21]

    Reis Pedro B P S, Vila-Viçosa D, Rocchia W, Machuqueiro M 2020 J. Chem. Inf. Model. 60 4442Google Scholar

    [22]

    Huang Y D, Yue Z, Tsai C C, Henderson J A, Shen J 2018 J. Phys. Chem. Lett. 9 1179Google Scholar

    [23]

    Li H, Robertson A D, Jensen J H 2005 Proteins 61 704Google Scholar

    [24]

    Olsson Mats H M, Søndergaard C R, Rostkowski M, Jensen J H 2011 J. Chem. Theory Comput. 7 525Google Scholar

    [25]

    Cai Z T, Luo F F, Wang Y X, Li E L, Huang Y D 2021 ACS Omega 6 34823Google Scholar

    [26]

    Gokcan H, Lsayev O 2022 Chem. Sci. 13 2462Google Scholar

    [27]

    Chen A Y, Lee J, Damjanovic Ana, Brooks B R 2022 J. Chem. Theory Comput. 184 2673Google Scholar

    [28]

    Reis Pedro B P S, Bertolini M, Montanari F, Rocchia W, Machuqueiro M, Clevert D A 2022 J. Chem. Theory Comput. 18 5068Google Scholar

    [29]

    Cai Z T, Liu T Z, Lin Q L, He J H, Lei X W, Luo F F, Huang Y D 2023 J. Chem. Inf. Model 63 2936Google Scholar

    [30]

    Baptista A M, Teixeira V H, Soares C M 2002 J. Chem. Phys. 117 4184Google Scholar

    [31]

    Lee M S, Salsbury F R, Brooks Ⅲ C L 2004 Proteins 56 738Google Scholar

    [32]

    Mongan J, Case D A, McCammon J A 2004 J. Comput. Chem. 25 2038Google Scholar

    [33]

    Meng Y, Roitberg A E 2010 J. Chem. Theory Comput. 6 1401Google Scholar

    [34]

    Swails J M, York D M, Roitberg A E 2014 J. Chem. Theory Comput. 10 1341Google Scholar

    [35]

    Machuqueiro M, Baptista A M 2006 J. Phys. Chem. B 110 2927Google Scholar

    [36]

    Sequeira J G N, Rodrigues F E P, Silva T G D, Reis Pedro B P S, Machuqueiro M 2022 J. Phys. Chem. B. 126 7870Google Scholar

    [37]

    Huang Y D, Chen W, Dotson D L, Beckstein O, Shen J 2016 Nat. Commun. 7 12940Google Scholar

    [38]

    Stern H A 2007 J. Chem. Phys. 126 164112Google Scholar

    [39]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [40]

    Chen Y, Roux B 2015 J. Chem. Theory Comput. 11 3919Google Scholar

    [41]

    Radak B K, Chipot C, Suh D, Jo S, Jiang W, Philips J C, Schulten K, Roux B 2017 J. Chem. Theory Comput. 13 5933Google Scholar

    [42]

    Wang R X, Fang X L, Lu Y P, Yang C Y, Wang S M 2005 J. Med. Chem. 48 4111Google Scholar

    [43]

    Pieri E, Ledentu V, Sahlin M, Dehez F, Olivucci M, Ferre N 2019 J. Chem. Theory Comput. 15 4535Google Scholar

    [44]

    de Oliveria V M, Liu R, Shen J 2022 Curr. Opin. Struct. Biol. 77 102498Google Scholar

    [45]

    Kong X, Brooks III C L 1996 J. Chem. Phys. 105 2414Google Scholar

    [46]

    Khandogin J, Brooks Ⅲ C L 2005 Biophys. J. 89 141Google Scholar

    [47]

    Nguyen H, Maier J, Huang H, Perrone V, Simmerling C 2014 J. Am. Chem. Soc. 136 13959Google Scholar

    [48]

    Huang Y D, Harris R C, Shen J 2018 J. Chem. Inf. Model. 58 1372Google Scholar

    [49]

    Liu R, Yue Z, Tsai C C, Shen J 2019 J. Am. Chem. Soc. 141 6553Google Scholar

    [50]

    Harris R C, Liu R, Shen, J 2020 J. Chem. Theory Comput. 16 3689Google Scholar

    [51]

    Liu R, Zhan S, Che Y, Shen J 2022 J. Med. Chem. 65 1525Google Scholar

    [52]

    Yao X, Chen C, Wang Y, Dong S, Liu Y, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer E A, Cui Q, Feng Y 2020 Sci. Adv. 6 eabd7182Google Scholar

    [53]

    Verma N, Henderson J A, Shen J 2020 J. Am. Chem Soc. 142 21883Google Scholar

    [54]

    Arthur E J, Brooks III C L 2016 J. Comput. Chem. 37 2171Google Scholar

    [55]

    Harris R C, Shen J 2019 J. Chem. Inf. Model. 59 4821Google Scholar

    [56]

    Wallace J A, Shen J K 2011 J. Chem. Theory Comput. 7 2617Google Scholar

    [57]

    Henderson J A, Huang Y D, Beckstein O, Shen J 2020 Proc. Natl. Acad. Sci. U. S. A. 117 25517Google Scholar

    [58]

    Chen W, Huang Y D, Shen J 2016 J. Phys. Chem. Lett. 7 3961Google Scholar

    [59]

    Yue Z, Li C, Voth G A, Swanson J M J 2019 J. Am. Chem. Soc. 141 13421Google Scholar

    [60]

    Vo Q N, Mahinthichaichan P, Shen J, Ellis C R 2021 Nat. Commun. 12 984Google Scholar

    [61]

    Li Z, Zhang X, Wang Q, Li C, Zhang N, Zhang X, Xu B, Ma B, Schrader T E, Coates L, Kovalevsky A, Huang Y D, Wan Q 2018 ACS Catal. 8 8058Google Scholar

    [62]

    Tsai C C, Yue Z, Shen J 2019 J. Am. Chem. Soc. 141 15092Google Scholar

    [63]

    Goh G B, Knight J L, Brooks III C L 2012 J. Chem. Theory Comput. 8 36Google Scholar

    [64]

    Wallace J A, Shen J K 2012 J. Chem. Phys. 137 184105Google Scholar

    [65]

    Chen W, Shen J K 2014 J. Comput. Chem. 35 1986Google Scholar

    [66]

    Huang Y D, Chen W, Wallace J A, Shen J 2016 J. Chem. Theory Comput. 12 5411Google Scholar

    [67]

    Harris J A, Liu R, de Oliveira V M, Vázquez-Montelongo E A, Henderson J A, Shen J 2022 J. Chem. Theory Comput. 18 7510Google Scholar

    [68]

    Chen W, Wallace J A, Yue Z, Shen J K 2013 Biophys. J. 105 L15Google Scholar

    [69]

    Wallace J A, Shen J K 2009 Methods Enzymol. 466 455Google Scholar

    [70]

    Ullmann G M 2003 J. Phys. Chem. B 107 1263Google Scholar

    [71]

    Goh G B, Hulbert B S, Zhou H, Brooks Ⅲ C L 2014 Proteins 82 1319Google Scholar

    [72]

    Webb H, Tynan-Connolly B M, Lee G M, Farrell D, O’Meara F, Sondergaard C R, Teilum K, Hewage C, Mclntosh L P, Nielsen J E 2010 Proteins 79 685-702Google Scholar

    [73]

    Rocklin G J, Mobley D L, Dill K A, Hunenberger P H 2013 J. Chem. Phys. 139 184103Google Scholar

    [74]

    Bignucolo O, Chipot C, Kellenberger S, Roux B 2022 J. Phys. Chem. B. 126 6868Google Scholar

    [75]

    Donnini S, Tegeler F, Groenhof G, Grubmüller H 2011 J. Chem. Theory Comput. 7 1962Google Scholar

    [76]

    Aho N, Buslaev P, Jansen A, Bauer P, Groenhof G, Hess B 2022 J. Chem. Theory Comput. 18 6148Google Scholar

    [77]

    Buslaev P, Aho N, Jansen A, Bauer P, Hess B, Groenhof G 2022 J. Chem. Theory Comput. 18 6134Google Scholar

    [78]

    Knight J L, Brooks Ⅲ C L 2011 J. Comput. Chem. 32 3423Google Scholar

    [79]

    Donnini S, Ullmann R T, Groenhof G, Grubmüller H 2016 J. Chem. Theory Comput. 12 1040Google Scholar

    [80]

    Huang Y D, Shuai J 2013 J. Phys. Chem. B 117 6138Google Scholar

    [81]

    Lemkul J A, Huang J, Roux B, MacKerell A D 2016 Chem. Rev. 116 4983Google Scholar

    [82]

    Khandogin J, Brooks Ⅲ C L 2006 Biochemistry 45 9363Google Scholar

    [83]

    Itoh S G, Damjanović A, Brooks B R 2011 Proteins 79 3420Google Scholar

    [84]

    Dashti D S, Meng Y, Roitberg A E 2012 J. Phys. Chem. B. 116 8805Google Scholar

    [85]

    Swails J M, Roitberg A E 2012 J. Chem. Theory Comput. 8 4393Google Scholar

    [86]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2015 J. Chem. Theory Comput. 11 2560Google Scholar

    [87]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2014 J. Chem. Theory Comput. 10 2738Google Scholar

    [88]

    Henderson J A, Verma N, Harris R, Shen J 2020 J. Chem. Phys. 153 115101Google Scholar

    [89]

    Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid A E, Kolinski A 2016 Chem. Rev. 116 7898Google Scholar

    [90]

    Bennett W D, Chen A W, Donnini S, Groenhof G, Tieleman D P 2013 Can. J. Chem. 91 839Google Scholar

    [91]

    da Silva F L B, Sterpone F, Derreumaux P 2019 J. Chem. Theory Comput. 15 3875Google Scholar

    [92]

    Crünewald F, Souza P C T, Abdizadeh H, Barnoud J, de Vries A H, Marrink S J 2020 J. Chem. Phys. 153 024118Google Scholar

    [93]

    Reilley D J, Wang J, Dokholyan N V, Alexandrova A N 2021 J. Chem. Theory Comput. 17 4583Google Scholar

    [94]

    Song Y, Mao J, Gunner M R 2009 J. Comput. Chem. 30 2231Google Scholar

    [95]

    Wang L, Zhang M, Alexov E 2016 Bioinformatics 32 614Google Scholar

    [96]

    Pahari S, Sun L, Basu S, Alexov E 2018 Proteins 86 1277Google Scholar

    [97]

    Bas D C, Rogers D M, Jensen J H 2008 Proteins 73 765Google Scholar

    [98]

    Sun Z, Wang X, Song J 2017 J. Chem Inf. Model. 57 1621Google Scholar

    [99]

    Stepniewska-Dziubinska M M, Zielenkiewicz P, Siedlecki P 2018 Bioinformatics 34 3666Google Scholar

    [100]

    Pahari S, Sun L, Alexov E 2019 Database 2019 baz024Google Scholar

    [101]

    Ancona N, Bastola A, Alexov E 2023 J. Comput. Biophys. Chem. 22 515Google Scholar

    [102]

    Reis Pedro B P S, Clevert D A, Machuqueiro M 2022 Bioinformatics 38 297

    [103]

    Wei W, Hogues H, Sulea T 2023 J. Chem. Inf. Model. 63 5169Google Scholar

    [104]

    Coskun D, Chen W, Clark A J, Lu C, Hardr E D, Wang L, Friesner R A, Miller E B 2022 J. Chem. Theory Comput. 18 7193Google Scholar

    [105]

    Hagg A, Kirschner K N 2023 J. Chem. Inf. Model. 63 4505Google Scholar

    [106]

    Bueschbell B, Caniceiro A B, Suzano P M S, Machuqueiro M, Rosário-Ferreira N, Moreira I S 2022 Drug Resist. Updat. 60 100811Google Scholar

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241581
    [2] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, 2025, 74(1): 1-8. doi: 10.7498/aps.74.20241458
    [3] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望. 物理学报, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [4] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [5] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [6] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [7] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [8] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [9] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [10] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [11] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [12] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习. 物理学报, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [13] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [14] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [15] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [16] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [17] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [18] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [19] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
计量
  • 文章访问数:  3805
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 修回日期:  2023-09-01
  • 上网日期:  2023-09-15
  • 刊出日期:  2023-12-20

/

返回文章
返回