-
In this paper, the development of surface physics in China is comprehensively reviewed, focusing on the State Key Laboratory of Surface Physics at the Chinese Academy of Sciences. It especially recognizes and honors the invaluable contributions made by the older generation of scientists in this field. By looking back at the history, it can be seen that the surface physics has developed vigorously in China: not only have many research papers with international advanced level been published, but also a large number of young talents have been cultivated, who have become an important force in the research of condensed matter physics internationally.
-
Keywords:
- surface atomic structures /
- nanocluster /
- quantum size effects /
- two-dimensional materials
[1] Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 27 1394Google Scholar
[2] Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 28 2049Google Scholar
[3] Jia J F, Zhao R G, and Yang W S 1993 Phys. Rev. B 48 18109Google Scholar
[4] Jia J F, Zhao R G, Yang W S 1993 Phys. Rev. B 48 18101Google Scholar
[5] 贾金峰, 赵汝光, 杨威生 1992 物理学报 41 827Google Scholar
Jia J F, Zhao R G, Yang W S 1992 Acta Phys. Sin. 41 827Google Scholar
[6] Li J L, Jia J F, Liang X J, Liu X, Wang J Z, Xue Q K, Li Z Q, Tse J S, Zhang Z Y, Zhang S B 2002 Phys. Rev. Lett. 88 066101Google Scholar
[7] Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar
[8] Jia J F, Liu X, Wang J Z, Li J L, Wang X S, Xue Q K, Li Z Q, Zhang Z Y, Zhang S B 2002 Phys. Rev. B 66 165412Google Scholar
[9] Xu Z, Bai X D, Wang Z L, Wang E G, 2006 J. Am. Chem. Soc. 128 1052Google Scholar
[10] Xu Z, Bai X D, Wang E G 2006 Appl. Phys. Lett. 88 133107Google Scholar
[11] Wang W L, Bai X D, Liu K H, Xu Z, Golberg D, Bando Y, Wang E G 2006 J. Am. Chem. Soc. 128 6530Google Scholar
[12] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915Google Scholar
[13] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802Google Scholar
[14] Zhang Y F, Tang Z, Han T Z, Ma X C, Jia J F, Xue Q K, Xun K, Wu S C 2007 Appl. Phys. Lett. 90 093120Google Scholar
[15] Qi Y, Ma X C, Jiang P, Ji S H, Fu Y H, Jia J F, Xue Q K, Zhang S B 2007 Appl. Phys. Lett. 90 013109Google Scholar
[16] Bao X Y, Zhang Y F, Wang Y P, Jia J F, Xue Q K, Xie X C, Zhao Z X 2005 Phys. Rev. Lett. 95 247005Google Scholar
[17] Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S, Liu F 2006 Phys. Rev. Lett. 97 266102Google Scholar
[18] Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B, Xue Q K 2007 Proc. Nat. Acad. Sci. USA 104 9204Google Scholar
[19] Jia J F, Li S C, Zhang Y F, Xue Q K 2007 J. Phys. Soc. Jpn. 76 082001Google Scholar
[20] Chiang T C 2014 Science 306 5703
[21] Zhang G H, Qin H J, Teng J, Guo J D, Guo Q L, Dai X, Fang Z, Wu K H 2009 Appl. Phys. Lett. 95 053114Google Scholar
[22] Song C L, Wang Y L, Jiang Y P, Zhang Y, Chang C Z, Wang L L, He K, Chen X, Jia J F, Wang Y Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang S C, Xue Q K, Ma X C 2010 Appl. Phys. Lett. 97 143118Google Scholar
[23] Li Y Y, Wang G A, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar
[24] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar
[25] Cheng P, Song C L, Zhang T, Zhang Y Y, Wang Y L, Jia J F, Wang J, Wang Y Y, Zhu B F, Chen X, Ma X C, He K, Wang L L, Dai X, Fang Z, Xie X C, Qi X L, Liu C X, Zhang S C, Xue Q K 2010 Phys. Rev. Lett. 105 076801Google Scholar
[26] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564
[27] Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2022 Nat. Chem. 14 25Google Scholar
[28] Zhu X T, Cao Y W, Zhang S Y, Jia X, Guo Q L, Yang F, Zhu L F, Zhang J D, Plummer E W, Guo J D 2015 Rev. Sci. Instrum. 86 083902Google Scholar
[29] Li J D, Li J X, Tang J L, Tao Z Y, Xue S W, Liu J X, Peng H L, Chen X Q, Guo J D, Zhu X T 2023 Phys. Rev. Lett. 131 116602Google Scholar
[30] Zhang X, Xu J Y, Tu Y B, Sun K, Tao M L, Xiong Z H, Wu K H, Wang J Z, Xue Q K, Meng S 2018 Phys. Rev. Lett. 121 256001Google Scholar
[31] Yang K, Chen H, Pope T, et al. 2019 Nat. Commun. 10 3599Google Scholar
[32] Zhang Q, Gao A, Meng F, et al. 2021 Nat. Commun. 12 1853Google Scholar
-
图 3 硒化铋薄膜以五原子层(QL)为单元生长, 从1 QL到6 QL薄膜的角分辨光电子能谱图(a)—(e)和对应的能量分布曲线(f)—(h), 可以清楚看到狄拉克表面态的能隙打开和Rashba型的劈裂[24]
Fig. 3. ARPES spectra of Bi2Se3 films at room temperature: (a)–(e) ARPES spectra of 1-6 quintuple layer (QL), the Bi2Se3 films grow in QL-by-QL mode; (f)–(h) the energy distribution curves of (c)–(e) respectively, which clearly shows the opening of the energy gap and the Rashba-type splitting for Dirac surface states[24].
-
[1] Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 27 1394Google Scholar
[2] Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 28 2049Google Scholar
[3] Jia J F, Zhao R G, and Yang W S 1993 Phys. Rev. B 48 18109Google Scholar
[4] Jia J F, Zhao R G, Yang W S 1993 Phys. Rev. B 48 18101Google Scholar
[5] 贾金峰, 赵汝光, 杨威生 1992 物理学报 41 827Google Scholar
Jia J F, Zhao R G, Yang W S 1992 Acta Phys. Sin. 41 827Google Scholar
[6] Li J L, Jia J F, Liang X J, Liu X, Wang J Z, Xue Q K, Li Z Q, Tse J S, Zhang Z Y, Zhang S B 2002 Phys. Rev. Lett. 88 066101Google Scholar
[7] Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar
[8] Jia J F, Liu X, Wang J Z, Li J L, Wang X S, Xue Q K, Li Z Q, Zhang Z Y, Zhang S B 2002 Phys. Rev. B 66 165412Google Scholar
[9] Xu Z, Bai X D, Wang Z L, Wang E G, 2006 J. Am. Chem. Soc. 128 1052Google Scholar
[10] Xu Z, Bai X D, Wang E G 2006 Appl. Phys. Lett. 88 133107Google Scholar
[11] Wang W L, Bai X D, Liu K H, Xu Z, Golberg D, Bando Y, Wang E G 2006 J. Am. Chem. Soc. 128 6530Google Scholar
[12] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915Google Scholar
[13] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802Google Scholar
[14] Zhang Y F, Tang Z, Han T Z, Ma X C, Jia J F, Xue Q K, Xun K, Wu S C 2007 Appl. Phys. Lett. 90 093120Google Scholar
[15] Qi Y, Ma X C, Jiang P, Ji S H, Fu Y H, Jia J F, Xue Q K, Zhang S B 2007 Appl. Phys. Lett. 90 013109Google Scholar
[16] Bao X Y, Zhang Y F, Wang Y P, Jia J F, Xue Q K, Xie X C, Zhao Z X 2005 Phys. Rev. Lett. 95 247005Google Scholar
[17] Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S, Liu F 2006 Phys. Rev. Lett. 97 266102Google Scholar
[18] Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B, Xue Q K 2007 Proc. Nat. Acad. Sci. USA 104 9204Google Scholar
[19] Jia J F, Li S C, Zhang Y F, Xue Q K 2007 J. Phys. Soc. Jpn. 76 082001Google Scholar
[20] Chiang T C 2014 Science 306 5703
[21] Zhang G H, Qin H J, Teng J, Guo J D, Guo Q L, Dai X, Fang Z, Wu K H 2009 Appl. Phys. Lett. 95 053114Google Scholar
[22] Song C L, Wang Y L, Jiang Y P, Zhang Y, Chang C Z, Wang L L, He K, Chen X, Jia J F, Wang Y Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang S C, Xue Q K, Ma X C 2010 Appl. Phys. Lett. 97 143118Google Scholar
[23] Li Y Y, Wang G A, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar
[24] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar
[25] Cheng P, Song C L, Zhang T, Zhang Y Y, Wang Y L, Jia J F, Wang J, Wang Y Y, Zhu B F, Chen X, Ma X C, He K, Wang L L, Dai X, Fang Z, Xie X C, Qi X L, Liu C X, Zhang S C, Xue Q K 2010 Phys. Rev. Lett. 105 076801Google Scholar
[26] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564
[27] Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2022 Nat. Chem. 14 25Google Scholar
[28] Zhu X T, Cao Y W, Zhang S Y, Jia X, Guo Q L, Yang F, Zhu L F, Zhang J D, Plummer E W, Guo J D 2015 Rev. Sci. Instrum. 86 083902Google Scholar
[29] Li J D, Li J X, Tang J L, Tao Z Y, Xue S W, Liu J X, Peng H L, Chen X Q, Guo J D, Zhu X T 2023 Phys. Rev. Lett. 131 116602Google Scholar
[30] Zhang X, Xu J Y, Tu Y B, Sun K, Tao M L, Xiong Z H, Wu K H, Wang J Z, Xue Q K, Meng S 2018 Phys. Rev. Lett. 121 256001Google Scholar
[31] Yang K, Chen H, Pope T, et al. 2019 Nat. Commun. 10 3599Google Scholar
[32] Zhang Q, Gao A, Meng F, et al. 2021 Nat. Commun. 12 1853Google Scholar
计量
- 文章访问数: 2890
- PDF下载量: 160
- 被引次数: 0