-
气体火花开关在脉冲功率技术中得到了大量应用, 但由于脉冲功率技术大电流高电压的特点, 气体火花开关在使用过程中很容易对电极表面造成烧蚀, 烧蚀产生的金属微粒会显著影响开关的稳定性和可靠性. 本文首先针对大气压氮气环境下的三电极气体火花开关放电过程进行建模, 对触发极边缘高场强区域的电离系数进行修正, 使用场致电子发射电流模拟初始电子产生的过程, 深入探究开关导通的物理机理, 详细叙述开关击穿过程各阶段的放电形态. 接着研究了金属微粒对于击穿过程的影响, 研究表明金属微粒的存在增强了触发极附近的电场, 加速了初始电子云的产生, 同时金属微粒与触发极之间会率先击穿, 并成为后续流注发展的源头. 除此之外, 金属微粒对于流注的传播具有阻碍作用, 使放电通道产生分支. 最后本文讨论了不同形状以及尺寸的金属微粒对于放电过程的影响, 这些都为进一步研究三电极气体火花开关放电过程以及金属微粒诱发开关击穿的物理机理提供了理论支撑.Compared with two-electrode gas spark switch, three-electrode gas spark switch has the advantages of lower operating voltage, higher reliability and less discharge jitter, so it has been widely used in pulse power systems. However, due to the characteristics of pulse power technology, the gas spark switch is easy to cause ablation on the electrode surface during use, and the metal particles generated by ablation will significantly affect the stability and reliability of the switch. In this work the discharge process of the three-electrode gas spark switch under atmospheric pressure nitrogen environment is simulated first. In this model, the ionization coefficient near the trigger electrode is modified to compensate for the shortcomings of the local field approximation, and the relevant mathematical derivation process is given. The formation of the initial electrons is described by the field electron emission phenomenon, and the development process of electron collapse into the streamer is obtained. The physical mechanism of switch on is investigated, and the development process of each stage of switch discharge is described in detail. Then, the discharge process of the switch is studied when there are metal particles near the trigger. The study shows that the presence of metal particles enhances the electric field near the trigger and accelerates the formation of the initial electron cloud. In addition, in the presence of metal particles, the metal particles and the trigger will first break down, forming a high-density plasma channel after the breakdown, and becoming the source of the subsequent flow development. At the same time, because the metal particles on the channel have an obstructing effect on the streamer development, the streamer generates a discharge branch after contacting metal particles. In the end, the influences of metal particles of different shapes and sizes on the discharge process are discussed. The results show that metal particles with sharp shapes have stronger electric field distortion, when the electric field intensity is large enough, it may cause field emission on the surface of metal particle. And it is also made clear that the size of metal particle is small, the obstruction of the development path of streamer is small, and the streamers quickly converge behind the particles.
-
Keywords:
- streamer discharge /
- gas spark switch /
- metal particle /
- field emission
[1] Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar
[2] Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2008 Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC Las Vegas, NV, USA, May 27–31, 2008 pp207–210
[3] 邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685Google Scholar
Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage 42 685Google Scholar
[4] Zhong W, Zhang G L, Xu A 2019 AIP Adv. 9 045023Google Scholar
[5] Li X A, Pei Z H, Wu Z C, Zhang Y Z, Liu X D, Li Y D, Zhang Q G 2018 Rev. Sci. Instrum. 89 035113Google Scholar
[6] Wang J, Li Q, Li B, Chen C, Liu S, Li C 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1951Google Scholar
[7] You H, Zhang Q, Guo C, Xu P, Ma J, Qin Y, Wen T, Li Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 876Google Scholar
[8] Cookson A H, Farish O, Sommerman G M L 1972 IEEE Trans. Power Appar. Syst. PAS-91 1329Google Scholar
[9] Laghari J R, Qureshi A H 1981 IEEE Trans. Electr. Insul. EI-16 388Google Scholar
[10] Hara M, Akazaki M 1977 J. Electrost. 2 223Google Scholar
[11] 徐翱, 钟伟, 金大志, 陈磊, 谈效华 2019 真空科学与技术学报 39 7Google Scholar
Xu A, Zhong W, Jin D Z, Chen L, Tan X H 2019 Chin. J. Vacuum Sci. Tech. 39 7Google Scholar
[12] Zhong W, Shi Y, Zhang C, Li X 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1095Google Scholar
[13] Sun Q, Zhou Q H, Yang W, Dong Y, Zhang H T, Song M M, Wu Y 2021 Plasma Sources Sci. Technol. 30 045001Google Scholar
[14] 孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar
Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar
[15] Asiunin V I, Davydov S G, Dolgov A N, et al. 2018 Plasma Phys. Rep. 44 605Google Scholar
[16] 党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛, 魏浩, 邱爱慈 2015 强激光与粒子束 27 065004Google Scholar
Dang T F, Yin J H, Sun F J, Wang Z G, Jiang X F, Zeng J T, Wei H, Qiu A C 2015 High Power Laser Part. Beams 27 065004Google Scholar
[17] 孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843Google Scholar
Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser Part. Beams 24 843Google Scholar
[18] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[19] Montijn C, Hundsdorfer W, Ebert U 2006 J. Comput. Phys. 219 801Google Scholar
[20] Dhali S K, Williams P F 1987 J. Appl. Phys. 62 4696Google Scholar
[21] Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar
[22] Soloviev V R, Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208Google Scholar
[23] Nefyodtsev E V 2014 IEEE Trans. Dielectr. Electr. Insul. 21 892Google Scholar
[24] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚 2021 物理学报 70 135102Google Scholar
Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar
[25] Forbes R G, Deane J H B 2007 Proc. R. Soc. A 463 2907Google Scholar
[26] 徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar
Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage 44 1922Google Scholar
[27] Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar
[28] 李伯男, 李熙, 黄磊峰, 刘洋, 吴益明, 吴鹏 2019 电力工程技术 38 123Google Scholar
Li B N, Li X, Huang L F, Liu Y, Wu Y M, Wu P 2019 Electric Power Eng. Tech. 38 123Google Scholar
-
图 3 电子密度时空分布图, 其中绿色等高线为1×1019 m–3电子数密度等高线, 红色等高线为1×1019 m–3正离子数密度等高线 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns
Fig. 3. Spatial and temporal distribution of electron density, where the green contour is the 1×1019 m–3 electron number density contour and the red contour is the 1×1019 m–3 positive ion number density contour: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.
图 8 电子密度时空分布图, 其中绿色等高线为1×1019 m–3电子数密度等高线, 红色等高线为1×1019 m–3正离子数密度等高线 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns
Fig. 8. Spatial and temporal distribution of electron density, where the green contour is the 1×1019 m–3 electron number density contour and the red contour is the 1×1019 m–3 positive ion number density contour: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.
-
[1] Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar
[2] Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2008 Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC Las Vegas, NV, USA, May 27–31, 2008 pp207–210
[3] 邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685Google Scholar
Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage 42 685Google Scholar
[4] Zhong W, Zhang G L, Xu A 2019 AIP Adv. 9 045023Google Scholar
[5] Li X A, Pei Z H, Wu Z C, Zhang Y Z, Liu X D, Li Y D, Zhang Q G 2018 Rev. Sci. Instrum. 89 035113Google Scholar
[6] Wang J, Li Q, Li B, Chen C, Liu S, Li C 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1951Google Scholar
[7] You H, Zhang Q, Guo C, Xu P, Ma J, Qin Y, Wen T, Li Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 876Google Scholar
[8] Cookson A H, Farish O, Sommerman G M L 1972 IEEE Trans. Power Appar. Syst. PAS-91 1329Google Scholar
[9] Laghari J R, Qureshi A H 1981 IEEE Trans. Electr. Insul. EI-16 388Google Scholar
[10] Hara M, Akazaki M 1977 J. Electrost. 2 223Google Scholar
[11] 徐翱, 钟伟, 金大志, 陈磊, 谈效华 2019 真空科学与技术学报 39 7Google Scholar
Xu A, Zhong W, Jin D Z, Chen L, Tan X H 2019 Chin. J. Vacuum Sci. Tech. 39 7Google Scholar
[12] Zhong W, Shi Y, Zhang C, Li X 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1095Google Scholar
[13] Sun Q, Zhou Q H, Yang W, Dong Y, Zhang H T, Song M M, Wu Y 2021 Plasma Sources Sci. Technol. 30 045001Google Scholar
[14] 孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar
Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar
[15] Asiunin V I, Davydov S G, Dolgov A N, et al. 2018 Plasma Phys. Rep. 44 605Google Scholar
[16] 党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛, 魏浩, 邱爱慈 2015 强激光与粒子束 27 065004Google Scholar
Dang T F, Yin J H, Sun F J, Wang Z G, Jiang X F, Zeng J T, Wei H, Qiu A C 2015 High Power Laser Part. Beams 27 065004Google Scholar
[17] 孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843Google Scholar
Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser Part. Beams 24 843Google Scholar
[18] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[19] Montijn C, Hundsdorfer W, Ebert U 2006 J. Comput. Phys. 219 801Google Scholar
[20] Dhali S K, Williams P F 1987 J. Appl. Phys. 62 4696Google Scholar
[21] Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar
[22] Soloviev V R, Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208Google Scholar
[23] Nefyodtsev E V 2014 IEEE Trans. Dielectr. Electr. Insul. 21 892Google Scholar
[24] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚 2021 物理学报 70 135102Google Scholar
Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar
[25] Forbes R G, Deane J H B 2007 Proc. R. Soc. A 463 2907Google Scholar
[26] 徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar
Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage 44 1922Google Scholar
[27] Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar
[28] 李伯男, 李熙, 黄磊峰, 刘洋, 吴益明, 吴鹏 2019 电力工程技术 38 123Google Scholar
Li B N, Li X, Huang L F, Liu Y, Wu Y M, Wu P 2019 Electric Power Eng. Tech. 38 123Google Scholar
计量
- 文章访问数: 2198
- PDF下载量: 53
- 被引次数: 0