搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理

严学文 张景蕾 张正宇 丁鹏 韩庆艳 张成云 高伟 董军

引用本文:
Citation:

单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理

严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军

Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure

Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun
PDF
HTML
导出引用
  • 本文借助外延生长及离子掺杂技术, 基于NaYbF4:2%Er3+微米晶体构建了多种不同的核壳微米盘, 通过降低材料的表面猝灭效应及增强离子间的能量传递效应, 实现了NaYbF4:2%Er3+微米晶体上转换红光发射的增强. 研究结果表明: 在980 nm近红外激光激发下, 构建的NaYbF4:2%Er3+@NaYbF4@NaYF4核-壳-壳微米盘的上转换红光发射强度相比于NaYbF4:2%Er3+微米盘增强了4.6倍, 红绿比由6.3提高至8.1. 当少量Ho3+离子引入到NaYbF4:2%Er3+@NaYbF4:2%Ho3+@NaYF4核-壳-壳微米盘时, Er3+离子与Ho3+离子间相互作用的发生使其上转换红光发射强度相比于NaYbF4:2%Er3+微米盘增强了近6.7倍, 且红绿比更是提高到9.4. 通过对不同核壳微米盘光谱特性和发光动力学的研究, 表明Er3+离子的红光发射增强主要源自于不同核壳结构中Yb3+离子的高效的能量传递有效促进了Er3+离子间的交叉弛豫、Er3+和Yb3+离子间反向能量传递及Ho3+离子向Er3+离子间的能量传递的发生, 进而提高了红光发射能级的粒子数布居. 其研究可为构建具有高效红光发射的上转换微纳晶体提供新途径.
    The construction of core-shell structure can effectively reduce the quenching effect on the surface of material and regulate ion-ion interaction, which has become one of the effective ways to enhance and regulate the spectral characteristics of rare-earth upconversion luminescent materials. In this paper, a variety of NaYbF4: 2%Er3+ micron core-shell structures are constructed with the help of epitaxial growth technology, effectively improving the red up-conversion emission of Er3+ ions. The prepared microcrystals with core-shell structures are of hexagonal phase microdisks, and their sizes are relatively uniform. In order to better obtain the material spectral data, a confocal microscopic spectroscopy is used to study spectral properties. Under 980 nm near-infrared laser excitation, the red emission intensity of single NaYbF4:2%Er3+@NaYbF4@NaYF4 core-shell-shell microdisk is 4.6 times higher than that of NaYbF4:2%Er3+ micron disk, and the red-to-green ratio increases from 6.3 to 8.1. Meanwhile, Ho3+ ions are introduced into the NaYbF4:2%Er3+@NaYbF4: 2%Ho3+ @NaYF4 core-shell-shell microdisk, and the red emission intensity is nearly 6.7 times higher than that of single NaYbF4: 2%Er3+ microdisk, and the red-to-green ratio increases from 6.3 to 9.4 through the interaction between ions. The microcrystal spectral characteristics and luminescence kinetics of different core-shell structures are studied, showing that the red emission enhancement of Er3+ ions is mainly derived from the construction of different core-shell structures, which can effectively enhance the cross-relaxation between Er3+ ions, the energy back transfer between Yb3+ and Er3+ ions, and the energy transfer from Ho3+ ions to Er3+ ions. The micron core-shell structures with efficient red emission in this study has great application prospects in the fields of luminescence, anti-counterfeiting and optoelectronic devices.
      通信作者: 高伟, gaowei@xupt.edu.cn ; 董军, dongjun@xupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12274341, 12004304, 12104366)、陕西省重点研发计划 (批准号: 2022SF-333, 2023-YBGY-256)、陕西省自然基金重点项目 (批准号: 2022JZ-05)、陕西省自然科学基金青年项目 (批准号: 2022JQ-041)、陕西省教育厅服务地方专项计划 (批准号: 22JC-057)和西安市高校院所人才服务企业项目(批准号: 23GXFW0089)资助的课题.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274341, 12004304, 12104366), the Key R & D Plan of Shaanxi Province, China (Grant Nos. 2022SF-333, 2023-YBGY-256), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JZ-05), the Youth Program of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JQ-041), the Education Department Service Local Special Program of Shaanxi Province, China (Grant No. 22JC057), and the Xi’an University Talents Service Enterprise Project, China (Grant No. 23GXFW0089).
    [1]

    Suo H, Zhu Q, Zhang X, Chen B 2021 Mater. Today Phys. 21 100520Google Scholar

    [2]

    Liu S B, Yan L, Li Q Q, Huang J S, Tao L L, Zhou B 2020 Chem. Eng. J. 397 125451Google Scholar

    [3]

    Zhang C Y, Ji M, Zhou X L, Mi X H, Chen H, Zhang B B, Fu Z K, Zhang Z L 2023 Adv. Funct. Mater. 33 2208561Google Scholar

    [4]

    Zhuang Y X, Chen D R, Chen W J, Zhang W X, Su X, Deng R R, An Z F 2021 Light-Sci. Appl. 10 132Google Scholar

    [5]

    Xiang Y, Zheng S S, Yuan S S, Wang J, Wu Y H, Zhu X H 2022 Mikrochim. Acta 189 120Google Scholar

    [6]

    Zhang Z J, Han Q Y, Lau J W, Xing B G 2020 ACS Mater. Lett. 2 1516Google Scholar

    [7]

    Chihara T, Umezawa M, Miyata K 2019 Sci. Rep. 9 12806Google Scholar

    [8]

    Jiang T, Qin W P, Zhou J 2014 J. Alloys Compd. 593 79Google Scholar

    [9]

    Venkataramanan Mahalingam, Chanchal Hazra, Rafik Naccache, Fiorenzo Vetroneb 2013 J. Mater. Chem. C 1 6536Google Scholar

    [10]

    何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 物理学报 62 237803Google Scholar

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin 62 237803Google Scholar

    [11]

    Sheng W, Yan L, Tan Y Y, Zhao Y, Huang H Z, Zhou B 2023 Adv. Photonics Res. 4 2300172Google Scholar

    [12]

    Wang Z J, Lin S B, Liu Y J, Hou J, Xu X Y, Zhao X 2022 Nanomaterials 12 3288Google Scholar

    [13]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compd. 857 157578Google Scholar

    [14]

    Sun Y Z, Bi H F, Wang T, Li Z X, Song H N, Sun F L, Zhou G J 2020 Mater. Sci. Eng. , C 261 114674Google Scholar

    [15]

    Peng Y H, Peng J C, Han J J, Wang T H, Yin Z Y, Qiu J B, Wang Q, Yang Z W 2020 J. Rare Earths 38 577Google Scholar

    [16]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732Google Scholar

    [17]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [18]

    Zhao J Y, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Phys. Chem. B 112 15666Google Scholar

    [19]

    Chen Y S, Zhou J P, Jiao Y C, He W, Wang H H, Hao X L, Lu J X, Yang S E 2013 J. Lumin. 134 504Google Scholar

    [20]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan W, Ying L Y, Zheng Z W 2021 Appl. Phys. Lett. 118 173301Google Scholar

    [21]

    Zhang G, Dong H, Wang D, Sun L D, Yan C H 2017 J. Rare Earths 35 1Google Scholar

    [22]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [23]

    Gao D L, Zhang X Y, He E J 2013 J. Alloys Compd. 554 395Google Scholar

    [24]

    M Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen 2000 Phys. Rev. B 61 3337Google Scholar

    [25]

    Xu F, Luo W, Li A H, Sun Z J 2023 J. Lumin. 253 119487Google Scholar

    [26]

    Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar

    [27]

    Lee C, Park H, Kim W 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar

    [28]

    Lin H, Xu D K, Chen Z Y, Li Y J, Xu L Q, Ma Y, Yang S H 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [29]

    Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar

    [30]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloys Compd. 818 152934Google Scholar

    [31]

    Luwang M N, Ningthoujam R S, Srivastava S K, Vatsa R K 2011 J. Mater. Chem. 21 5326Google Scholar

    [32]

    Cheng X W, Ge H, Wei Y, Huang L 2018 ACS Nano 12 10992Google Scholar

  • 图 1  基于NaYbF4:2%Er3+微米晶体构建的不同核壳结构模型及其相应的能量传递示意图

    Fig. 1.  Schematic diagram of different core-shell structures based on NaYbF4:2%Er3+ micron crystals and their corresponding energy transfer.

    图 2  NaYbF4:2%Er3+微米晶体及包覆不同核壳结构的XRD图

    Fig. 2.  The XRD patterns of NaYbF4:2%Er3+microcrystals and their coating with different core-shell (CS) structures.

    图 3  (a)—(f) NaYbF4:2%Er3+微米晶体及其包覆不同壳层核壳结构的SEM图, (a1)—(f1)为其相应的元素映射图

    Fig. 3.  (a)–(f) SEM image of NaYbF4:2%Er3+ microcrystals and coating with different CS structures. (a1)–(f1) The corresponding element maps

    图 4  在980 nm激发下, 单个NaYbF4:2%Er3+微米盘及其包覆不同壳层微米盘的 (a)上转换发射光谱(插图为对应发光图案), (b) 红绿比及(c) 红光发射强度的增强倍数

    Fig. 4.  (a) The UC emission spectra (the insert is corresponding optical micrographs), (b) R/G ratio and (c) enhancement factor of the red emission of the NaYbF4:2%Er3+ microcrystals and coating with different CS structures under the excitation of a 980 nm NIR laser.

    图 5  在近红外光980 nm激光激发下, 单个NaYbF4:2%Er3+微米盘及掺杂2%Ho3+离子的不同核壳结构的 (a)上转换发射光谱(插图为对应发光图案), (b)红绿比及(c)红光发射强度的增强倍数

    Fig. 5.  (a) The UC emission spectra (the insert is corresponding optical micrographs), (b) R/G ratio and (c) enhancement factor of the red emission of the NaYbF4:2%Er3+ microcrystals and coating with different CS structures with doping 2%Ho3+ ions under the excitation of a 980 nm NIR laser.

    图 6  在980 nm不同泵浦功率激发下, 单颗粒NaYbF4:2%Er3+, NaYbF4:2%Er3+@NaYbF4:2%Ho3+ 与NaYbF4:2%Er3+@NaYbF4@NaYF4核-壳-壳结构微米盘的上转换发射光谱(插图为其对应发光图案)及其红、绿光发射依赖关系

    Fig. 6.  Under different pump power excitation at 980 nm, the upconversion emission spectra of a single particle NaYbF4:2%Er3+, NaYbF4:2%Er3+@NaYbF4:2%Ho3+, and NaYbF4:2%Er3+@NaYbF4 @ NaYF4 core-shell-shell micron disks (the corresponding luminescence pattern is inset) and their red and green emission dependencies.

    图 7  在980 nm激光激发下, 不同结构中Yb3+, Er3+及Ho3+离子间的能量传递及其可能的跃迁机理图

    Fig. 7.  Diagram of energy transfer between Yb3+, Er3+ and Ho3+ ions in different structures and their possible transition mechanisms under 980 nm laser excitation.

    图 8  在近红外光980 nm脉冲激光激发下, NaYbF4:2%Er3+微米盘及不同核壳结构中Er3+离子在4F9/2激发态能级(654 nm)处的发光寿命衰减曲线

    Fig. 8.  Luminescence lifetime attenuation curve of Er3+ ions at 4F9/2 excited state level (654 nm) in NaYbF4:2%Er3+ microdisks and different core-shell structures under near-infrared 980 nm pulsed laser excitation.

  • [1]

    Suo H, Zhu Q, Zhang X, Chen B 2021 Mater. Today Phys. 21 100520Google Scholar

    [2]

    Liu S B, Yan L, Li Q Q, Huang J S, Tao L L, Zhou B 2020 Chem. Eng. J. 397 125451Google Scholar

    [3]

    Zhang C Y, Ji M, Zhou X L, Mi X H, Chen H, Zhang B B, Fu Z K, Zhang Z L 2023 Adv. Funct. Mater. 33 2208561Google Scholar

    [4]

    Zhuang Y X, Chen D R, Chen W J, Zhang W X, Su X, Deng R R, An Z F 2021 Light-Sci. Appl. 10 132Google Scholar

    [5]

    Xiang Y, Zheng S S, Yuan S S, Wang J, Wu Y H, Zhu X H 2022 Mikrochim. Acta 189 120Google Scholar

    [6]

    Zhang Z J, Han Q Y, Lau J W, Xing B G 2020 ACS Mater. Lett. 2 1516Google Scholar

    [7]

    Chihara T, Umezawa M, Miyata K 2019 Sci. Rep. 9 12806Google Scholar

    [8]

    Jiang T, Qin W P, Zhou J 2014 J. Alloys Compd. 593 79Google Scholar

    [9]

    Venkataramanan Mahalingam, Chanchal Hazra, Rafik Naccache, Fiorenzo Vetroneb 2013 J. Mater. Chem. C 1 6536Google Scholar

    [10]

    何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 物理学报 62 237803Google Scholar

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin 62 237803Google Scholar

    [11]

    Sheng W, Yan L, Tan Y Y, Zhao Y, Huang H Z, Zhou B 2023 Adv. Photonics Res. 4 2300172Google Scholar

    [12]

    Wang Z J, Lin S B, Liu Y J, Hou J, Xu X Y, Zhao X 2022 Nanomaterials 12 3288Google Scholar

    [13]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compd. 857 157578Google Scholar

    [14]

    Sun Y Z, Bi H F, Wang T, Li Z X, Song H N, Sun F L, Zhou G J 2020 Mater. Sci. Eng. , C 261 114674Google Scholar

    [15]

    Peng Y H, Peng J C, Han J J, Wang T H, Yin Z Y, Qiu J B, Wang Q, Yang Z W 2020 J. Rare Earths 38 577Google Scholar

    [16]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732Google Scholar

    [17]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [18]

    Zhao J Y, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Phys. Chem. B 112 15666Google Scholar

    [19]

    Chen Y S, Zhou J P, Jiao Y C, He W, Wang H H, Hao X L, Lu J X, Yang S E 2013 J. Lumin. 134 504Google Scholar

    [20]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan W, Ying L Y, Zheng Z W 2021 Appl. Phys. Lett. 118 173301Google Scholar

    [21]

    Zhang G, Dong H, Wang D, Sun L D, Yan C H 2017 J. Rare Earths 35 1Google Scholar

    [22]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [23]

    Gao D L, Zhang X Y, He E J 2013 J. Alloys Compd. 554 395Google Scholar

    [24]

    M Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen 2000 Phys. Rev. B 61 3337Google Scholar

    [25]

    Xu F, Luo W, Li A H, Sun Z J 2023 J. Lumin. 253 119487Google Scholar

    [26]

    Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar

    [27]

    Lee C, Park H, Kim W 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar

    [28]

    Lin H, Xu D K, Chen Z Y, Li Y J, Xu L Q, Ma Y, Yang S H 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [29]

    Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar

    [30]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloys Compd. 818 152934Google Scholar

    [31]

    Luwang M N, Ningthoujam R S, Srivastava S K, Vatsa R K 2011 J. Mater. Chem. 21 5326Google Scholar

    [32]

    Cheng X W, Ge H, Wei Y, Huang L 2018 ACS Nano 12 10992Google Scholar

  • [1] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码. 物理学报, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性. 物理学报, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [4] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [5] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [6] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [7] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [8] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [9] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [10] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [11] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射. 物理学报, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [12] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [13] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递. 物理学报, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [14] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [15] 杨志平, 杨广伟, 王少丽, 田 晶, 李盼来, 李 旭. Eu2+,Mn2+在BaZnP2O7中的发光及Eu2+→Mn2+能量传递. 物理学报, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [16] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [17] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究. 物理学报, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [18] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [19] 孙世菊, 滕 枫, 徐 征, 张延芬, 侯延冰. 聚乙烯基咔唑与Alq3混合薄膜的发光性能与能量传递过程. 物理学报, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [20] 王殿元, 谢平波, 张慰萍, 楼立人, 夏上达. 稀土离子发光体系中能量传递和迁移模型的研究. 物理学报, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
计量
  • 文章访问数:  2512
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2023-11-20
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-03-05

/

返回文章
返回