搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B位空位补偿型钐掺杂PZT(54/46)陶瓷中的缺陷分析及其对压电性能的影响

杨静 冯少蓉 张涛 牛旭平 王荣 李敏 于润升 曹兴忠 王宝义

引用本文:
Citation:

B位空位补偿型钐掺杂PZT(54/46)陶瓷中的缺陷分析及其对压电性能的影响

杨静, 冯少蓉, 张涛, 牛旭平, 王荣, 李敏, 于润升, 曹兴忠, 王宝义

Analysis of defects in B-vacancy compensated Sm-doped PZT(54/46) ceramics and their influences on piezoelectric properties

Yang Jing, Feng Shao-Rong, Zhang Tao, Niu Xu-Ping, Wang Rong, Li Min, Yu Run-Sheng, Cao Xing-Zhong, Wang Bao-Yi
PDF
HTML
导出引用
  • 用固相反应法制备了B位空位补偿型钐掺杂非准同型相界组分PZT(54/46)陶瓷. 通过正电子湮没寿命谱(PALS)和符合多普勒展宽能谱(CDBS)对陶瓷中的缺陷结构进行综合表征, 结合常规表征手段如X射线衍射(XRD), 电子扫描显微镜(SEM), 介电、铁电和压电性能测量, 研究缺陷对陶瓷压电性能的影响. XRD结果显示所有陶瓷均为纯钙钛矿相, 掺杂诱导了菱方-四方(R-T)相变, 准同型相界位于Sm掺杂量x = 0.01$- $0.02. 电学测量结果反映: 介电、铁电和压电性能均先增强后减弱, MPB附近两个样品都有优异的介电和铁电性能, 但其压电性能差别很大. x = 0.01给出最优压电性能d33 = 572 pC/N, 较未掺杂样品增强了一倍. PALS结果表明掺杂使陶瓷中缺陷类型发生变化, x ≤ 0.01, 样品中同时含有A位空位与B位空位; x ≥ 0.02, 样品中以A位相关缺陷为主, B位空位浓度很低. CDBS结果进一步证实x = 0.01和0.02中B位空位浓度分别是该体系中最高和最低的. 由以上结果推断出: x = 0.01获得的最优压电性能与其中较高浓度的B位空位有关, B位空位可稀释A位空位浓度, 降低氧空位浓度, 从而降低A位空位与氧空位形成缺陷偶极子的几率, 促进畴壁运动, 使压电性能增强.
    Rare earth dopping, especially samarium (Sm) dopping is considered as an effective way to obtain high piezoelectricity by increasing local structure heterogeneity in Pb-containing ABO3 perovskite ceramics. Defects play an significant role in determining piezoelectric properties in aliovalent ion doping systems. In order to obtain an insight into the effect of defects, especially B-site vacancies on piezoelectricity, Sm-doped PZT(54/46) ceramics compensated by B-site vacancies are fabricated by conventional solid state reaction method. The influence of defects on piezoelectric properties is studied by positron annihilation lifetime spectroscopy (PALS), coincidence Doppler broadening spectroscopy (CDBS), and conventional methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), electrical performance testing on dielectricity, ferroelectricity and pizoelectricity. The XRD results show that all ceramics crystallize in a pure perovskite phase, Sm3+ doping causes a transformation from the rhombohedral to tetragonal phase and the morphotropic phase boundary (MPB) lies near Sm3+ doping content x = 0.01–0.02. Electrical performance testing results indicate that with the increase of x, all of the dielectricity, ferroelectricity and pizoelectricity first increase and then decrease, the sample with x = 0.01 and 0.02 exhibit similar excellent dielectricity and ferroelectricity, while their pizoelectricity differs greatly, the optimal piezoelectric coefficient d33 = 572 pC/N (nearly double that of undoped sample) is obtained in the sample with x = 0.01. The PALS results show that Sm doping leads the defect types to change from the coexistence of A-site and B-site vacancies for x ≤ 0.01 to mainly A-site related defects for x ≥ 0.02. The CDBS results further verify that the concentration of B-site vacancies is highest for x = 0.01 and lowest for x = 0.02. It is inferred that the high pizoelectricity for x = 0.01 is related to its high concentration of B-site vacancies, which can dilute the number of A-site vacancies and oxygen vacancies, reducing the chance of forming defect dipoles between an A-site vacancy and an oxygen vacancy, facilitating domain wall motion, and enhancing piezoelectricity. This study indicates that B-site vacancies can enhance piezoelectricity to some extent, which will provide some guidance for defect engineering.
      通信作者: 杨静, yangjing10@xust.edu.cn ; 张涛, tzhang@xust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075189, 11605133, 12004300, 11974275)、中国博士后科学基金(批准号: 2018M643813XB)和陕西省联合基金重点项目(批准号: 2021JML-05)资助的课题.
      Corresponding author: Yang Jing, yangjing10@xust.edu.cn ; Zhang Tao, tzhang@xust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075189, 11605133, 12004300, 11974275), the China Postdoctoral Science Foundation (Grant No. 2018M643813XB), and the Key Joint Funds of Shaanxi Province, China (Grant No. 2021JML-05).
    [1]

    Jaffe B, Roth R S, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar

    [2]

    Yan Y, Li Z, Jin L, Du H, Zhang M, Zhang D, Hao Y 2021 ACS Appl. Mater. Interfaces 13 38517Google Scholar

    [3]

    Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen L, Shrout T R, Zhang S 2018 Nat. Mater. 17 349Google Scholar

    [4]

    Fang Z, Tian X, Zheng F, Jiang X, Ye W, Qin Y, Wang X, Zhang Y 2022 Ceram. Int. 48 7550Google Scholar

    [5]

    Guo Q, Li F, Xia F, Gao X, Wang P, Hao H, Sun H, Liu H, Zhang S 2019 ACS Appl. Mater. Interfaces 11 43359Google Scholar

    [6]

    Seshadri S B, Nolan M M, Tutuncu G, Forrester J S, Sapper E, Esteves G, Granzow T, Thomas P A, Nino J C, Rojac T, Jones J L 2018 Sci. Rep. 8 4120Google Scholar

    [7]

    Gao B, Yao Z, Lai D, Guo Q, Pan W, Hao H, Cao M, Liu H 2020 J. Alloys Compd. 836 155474Google Scholar

    [8]

    Yan P, Qin Y, Xu Z, Han F, Wang Y, Wen Z, Zhang Y, Zhang S 2021 ACS Appl. Mater. Interfaces 13 54210Google Scholar

    [9]

    Guo Q, Hou L, Li F, Xia F, Wang P, Hao H, Sun H, Liu H, Zhang S 2019 J. Am. Ceram. Soc. 102 7428Google Scholar

    [10]

    Qin Y, Yan P, Han F, Zhang Y, Lü Z, Zhou C 2022 J. Alloys Compd. 891 161959Google Scholar

    [11]

    Li C, Xu B, Lin D, Zhang S, Bellaiche L, Shrout T R, Li F 2020 Phys. Rev. B 101 140102Google Scholar

    [12]

    Peng G, Zheng D, Cheng C, Zhang J, Zhang H 2017 J Alloys Compd. 693 1250Google Scholar

    [13]

    Cheng C, Zheng D Y, Peng G G, Hu S M, Zhang H, Zhang J 2016 J. Mater. Sci. 28 1624Google Scholar

    [14]

    Kim T Y, Jang H M 2000 Appl. Phys. Lett. 77 3824Google Scholar

    [15]

    Garcia-Zaldivar O, Pelaiz-Barranco A, Guerra J D S, Mendoza M E, Calderon-Pinar F, Hall D A 2011 Physica B 406 1622Google Scholar

    [16]

    Pandey A H, Gupta S M 2020 Mater. Sci. Eng., B 253 114495Google Scholar

    [17]

    Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar

    [18]

    Li Z, Thong H C, Zhang Y F, Xu Z, Zhou Z, Liu Y X, Cheng Y Y S, Wang S H, Zhao C, Chen F, Bi K, Han B, Wang K 2021 Adv. Funct. Mater. 31 2005012Google Scholar

    [19]

    Keeble D J, Singh S, Mackie R A, Morozov M, McGuire S, Damjanovic D 2007 Phys. Rev. B 76 144109Google Scholar

    [20]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [21]

    熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江 2009 物理学报 58 6946Google Scholar

    Xiong T, Gao C B, Chen X L, Zhou X Y, Weng H M, Cao F Y, Ye B J, Han R D, Du H J 2009 Acta Phys. Sin. 58 6946Google Scholar

    [22]

    Qin M, Gao F, Cizek J, Yang S, Fan X, Zhao L, Xu J, Dong G, Reece M, Yan H 2019 Acta Mater. 164 76Google Scholar

    [23]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal D, Chakrabarti A 2005 J. Mater. Sci. 40 5265Google Scholar

    [24]

    Čížek J, Melikhova O, Procházka I, Kuriplach J, Kužel R, Brauer G, Anwand W, Konstantinova T E, Danilenko I A 2010 Phys. Rev. B 81 024116Google Scholar

    [25]

    Li K, Sun E, Zhang Y, Song Z, Qi X, Sun Y, Li J, Yang B, Liu J, Cao W 2021 J. Mater. Chem. C 9 2426Google Scholar

    [26]

    Bellaiche L, Íñiguez J, Cockayne E, Burton B P 2007 Phys. Rev. B 75 014111Google Scholar

    [27]

    Zhu W, Fujii I, Ren W, Trolier-McKinstry S 2012 J. Am. Ceram. Soc. 95 2906Google Scholar

  • 图 1  xSm-PZT(54/46)陶瓷的XRD结果 (a) 20°—70°全谱图; (b) 42°—46°的慢扫谱图

    Fig. 1.  XRD patterns of xSm-PZT(54/46) ceramics: (a) 2θ = 20°—70°; (b) selected region of 2θ = 42°—46°.

    图 2  0.02 Sm-PZT(54/46)陶瓷的SEM图像

    Fig. 2.  SEM images of 0.02 Sm-PZT (54/46) ceramics.

    图 3  xSm-PZT(54/46)的介电频谱 (a) 介电常数; (b) 介电损耗

    Fig. 3.  Dielectric spectrum of xSm-PZT(54/46): (a) Permittivity; (b) loss tangent.

    图 4  xSm-PZT(54/46)陶瓷的铁电性能 (a) P-E电滞回线; (b) J-E曲线

    Fig. 4.  Ferroelectric properties of xSm-PZT(54/46): (a) P-E hysteresis loops; (b) J-E curves.

    图 5  xSm-PZT(54/46)陶瓷的压电性能

    Fig. 5.  Piezoelectric properties of the xSm-PZT(54/46) ceramics.

    图 6  xSm-PZT(54/46)陶瓷的CBDS商谱结果(以未掺杂PZT为参比) (a) 全谱图; (b) O 2p峰放大图

    Fig. 6.  CDBS ratio curves of xSm-PZT(54/46) ceramics, using undoped PZT as the reference: (a) Full curves; (b) enlarged O 2p peak curves.

    表 1  xSm-PZT(54/46)陶瓷的铁电性能指标

    Table 1.  Ferroelectric parameters of xSm-PZT(54/46) ceramics

    样品 矫顽场Ec/(kV·cm–1) 最大极化值Pm/(µC·cm–2) 剩余极化2Pr/(µC·cm–2)
    0.000 Sm-PZT(54/46) 6.50543 22.9362 17.8235
    0.005 Sm-PZT(54/46) 9.07716 28.9513 41.7151
    0.010 Sm-PZT(54/46) 11.96854 29.7117 43.8174
    0.020 Sm-PZT(54/46) 16.22384 30.0491 45.7736
    0.030 Sm-PZT(54/46) 19.54932 26.0871 40.9861
    0.040 Sm-PZT(54/46) 12.44085 21.0489 28.7527
    下载: 导出CSV

    表 2  xSm-PZT(54/46)陶瓷PALS解谱结果(τ1固定为160 ps)

    Table 2.  Decomposed PALS results of xSm-PZT(54/46) ceramics (with τ1 fixed to 160 ps).

    Sample τ1/ps I1/% τ2/ps I2/% τ3/ps I3/% Fit’s variance
    0.000 Sm-PZT(54/46) 160 41.01 ± 0.24 272.5 ± 1.1 58.02 ± 0.24 1386 ± 58 0.97 ± 0.05 1.0526
    0.005 Sm-PZT(54/46) 160 33.69 ± 0.64 275.9 ± 1.4 65.37 ± 0.64 1531 ± 33 0.94 ± 0.03 1.0155
    0.010 Sm-PZT(54/46) 160 31.61 ± 0.20 276.3 ± 0.4 67.45 ± 0.20 1477 ± 34 0.94 ± 0.02 0.9946
    0.020 Sm-PZT(54/46) 160 23.01 ± 0.65 293.0 ± 1.5 75.97 ± 0.65 1531 ± 39 1.01 ± 0.04 1.0727
    0.030 Sm-PZT(54/46) 160 24.25 ± 0.53 289.9 ± 1.2 74.87 ± 0.53 1457 ± 81 0.88 ± 0.06 0.9906
    0.040 Sm-PZT(54/46) 160 31.33 ± 0.42 286.3 ± 1.3 67.57 ± 0.42 1402 ± 34 1.09 ± 0.04 1.0466
    下载: 导出CSV

    表 3  xSm-PZT(54/46)陶瓷归一化PALS解谱结果

    Table 3.  Normalized parameters of decomposed PALS results of xSm-PZT(54/46) ceramics.

    Sample τ1/ps I1/% τ2/ps I2/% Fit’s variance
    0.000 Sm-PZT(54/46) 160 41.41 ± 0.24 272.5 ± 1.1 58.59 ± 0.24 1.047
    0.005 Sm-PZT(54/46) 160 34.01 ± 0.64 275.9 ± 1.4 65.99 ± 0.64 1.0155
    0.010 Sm-PZT(54/46) 160 31.91 ± 0.20 276.3 ± 0.4 68.09 ± 0.20 0.9954
    0.020 Sm-PZT(54/46) 160 23.25 ± 0.65 293.0 ± 1.5 76.75 ± 0.65 1.0683
    0.030 Sm-PZT(54/46) 160 24.47 ± 0.53 289.9 ± 1.2 75.53 ± 0.53 0.9928
    0.040 Sm-PZT(54/46) 160 31.68 ± 0.42 286.3 ± 1.3 68.32 ± 0.42 1.0511
    下载: 导出CSV
  • [1]

    Jaffe B, Roth R S, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar

    [2]

    Yan Y, Li Z, Jin L, Du H, Zhang M, Zhang D, Hao Y 2021 ACS Appl. Mater. Interfaces 13 38517Google Scholar

    [3]

    Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen L, Shrout T R, Zhang S 2018 Nat. Mater. 17 349Google Scholar

    [4]

    Fang Z, Tian X, Zheng F, Jiang X, Ye W, Qin Y, Wang X, Zhang Y 2022 Ceram. Int. 48 7550Google Scholar

    [5]

    Guo Q, Li F, Xia F, Gao X, Wang P, Hao H, Sun H, Liu H, Zhang S 2019 ACS Appl. Mater. Interfaces 11 43359Google Scholar

    [6]

    Seshadri S B, Nolan M M, Tutuncu G, Forrester J S, Sapper E, Esteves G, Granzow T, Thomas P A, Nino J C, Rojac T, Jones J L 2018 Sci. Rep. 8 4120Google Scholar

    [7]

    Gao B, Yao Z, Lai D, Guo Q, Pan W, Hao H, Cao M, Liu H 2020 J. Alloys Compd. 836 155474Google Scholar

    [8]

    Yan P, Qin Y, Xu Z, Han F, Wang Y, Wen Z, Zhang Y, Zhang S 2021 ACS Appl. Mater. Interfaces 13 54210Google Scholar

    [9]

    Guo Q, Hou L, Li F, Xia F, Wang P, Hao H, Sun H, Liu H, Zhang S 2019 J. Am. Ceram. Soc. 102 7428Google Scholar

    [10]

    Qin Y, Yan P, Han F, Zhang Y, Lü Z, Zhou C 2022 J. Alloys Compd. 891 161959Google Scholar

    [11]

    Li C, Xu B, Lin D, Zhang S, Bellaiche L, Shrout T R, Li F 2020 Phys. Rev. B 101 140102Google Scholar

    [12]

    Peng G, Zheng D, Cheng C, Zhang J, Zhang H 2017 J Alloys Compd. 693 1250Google Scholar

    [13]

    Cheng C, Zheng D Y, Peng G G, Hu S M, Zhang H, Zhang J 2016 J. Mater. Sci. 28 1624Google Scholar

    [14]

    Kim T Y, Jang H M 2000 Appl. Phys. Lett. 77 3824Google Scholar

    [15]

    Garcia-Zaldivar O, Pelaiz-Barranco A, Guerra J D S, Mendoza M E, Calderon-Pinar F, Hall D A 2011 Physica B 406 1622Google Scholar

    [16]

    Pandey A H, Gupta S M 2020 Mater. Sci. Eng., B 253 114495Google Scholar

    [17]

    Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar

    [18]

    Li Z, Thong H C, Zhang Y F, Xu Z, Zhou Z, Liu Y X, Cheng Y Y S, Wang S H, Zhao C, Chen F, Bi K, Han B, Wang K 2021 Adv. Funct. Mater. 31 2005012Google Scholar

    [19]

    Keeble D J, Singh S, Mackie R A, Morozov M, McGuire S, Damjanovic D 2007 Phys. Rev. B 76 144109Google Scholar

    [20]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [21]

    熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江 2009 物理学报 58 6946Google Scholar

    Xiong T, Gao C B, Chen X L, Zhou X Y, Weng H M, Cao F Y, Ye B J, Han R D, Du H J 2009 Acta Phys. Sin. 58 6946Google Scholar

    [22]

    Qin M, Gao F, Cizek J, Yang S, Fan X, Zhao L, Xu J, Dong G, Reece M, Yan H 2019 Acta Mater. 164 76Google Scholar

    [23]

    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal D, Chakrabarti A 2005 J. Mater. Sci. 40 5265Google Scholar

    [24]

    Čížek J, Melikhova O, Procházka I, Kuriplach J, Kužel R, Brauer G, Anwand W, Konstantinova T E, Danilenko I A 2010 Phys. Rev. B 81 024116Google Scholar

    [25]

    Li K, Sun E, Zhang Y, Song Z, Qi X, Sun Y, Li J, Yang B, Liu J, Cao W 2021 J. Mater. Chem. C 9 2426Google Scholar

    [26]

    Bellaiche L, Íñiguez J, Cockayne E, Burton B P 2007 Phys. Rev. B 75 014111Google Scholar

    [27]

    Zhu W, Fujii I, Ren W, Trolier-McKinstry S 2012 J. Am. Ceram. Soc. 95 2906Google Scholar

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析. 物理学报, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [4] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究. 物理学报, 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [5] 王月, 马杰. MoS2中S原子空位形成的非绝热动力学研究. 物理学报, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [7] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理. 物理学报, 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [8] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [9] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [10] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [11] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响. 物理学报, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [12] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [13] 陈青云, 孟川民, 卢铁城, 徐明, 胡又文. 中子嬗变掺杂前后Ge纳米晶的结构和性质. 物理学报, 2010, 59(9): 6473-6479. doi: 10.7498/aps.59.6473
    [14] 袁剑辉, 程玉民, 张振华. 空位结构缺陷对C纳米管弹性性质的影响. 物理学报, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [15] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [16] 蒋中英, 郁伟中, 赵永富, 蒋锡群, 夏元复. 60Co的γ辐照对SB的自由体积和微结构的影响的PALS和FT-IR的研究. 物理学报, 2006, 55(7): 3743-3747. doi: 10.7498/aps.55.3743
    [17] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [18] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究. 物理学报, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [19] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
    [20] 何元金, 马兴坤, 桂治轮, 李龙土. 用正电子湮没研究钙钛矿结构压电陶瓷中的点缺陷. 物理学报, 1998, 47(1): 146-153. doi: 10.7498/aps.47.146
计量
  • 文章访问数:  1962
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-01-03
  • 上网日期:  2024-01-24
  • 刊出日期:  2024-04-05

/

返回文章
返回