搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲受激布里渊散射光谱的非接触式黏弹性测量

李佳芮 乐陶然 尉昊赟 李岩

引用本文:
Citation:

基于脉冲受激布里渊散射光谱的非接触式黏弹性测量

李佳芮, 乐陶然, 尉昊赟, 李岩

Non-contact viscoelasticity measurements based on impulsive stimulated Brillouin spectroscopy

Li Jia-Rui, Le Tao-Ran, Wei Hao-Yun, Li Yan
PDF
HTML
导出引用
  • 细胞和组织的力学特性在决定生物功能中起着至关重要的作用, 布里渊光谱技术作为一种黏弹性显微成像方法, 可以无标记、非接触地以高空间分辨率表征样品的力学特征变化. 为了更加灵敏地识别生物系统的微小力学性质差异, 在提高布里渊散射效率的同时, 结合多种黏弹性对比机制进行测量是需要关注的问题. 本文报道了基于脉冲受激布里渊散射的光谱测量方法, 采用脉冲光激发、连续光时域探测的方式, 通过一次时域测量即可得到完整光谱并根据光谱信息反演样品的多种黏弹性参数. 得益于受激散射和时域探测, 实验中以毫秒级的光谱积分时间即可得到信噪比为26 dB的光谱, 弹性纵模的存储模量和损耗模量的平均测量精度分别达0.1%和1%. 基于此方法, 测量并对比了常见液体及聚合物材料的布里渊光谱, 并研究了不同固化阶段的PDMS弹性变化, 与琼脂糖凝胶进行了对比. 最后, 基于多种黏弹性对比机制对6种食用油进行鉴别, 不仅为物质鉴别提供了新的思路, 也拓展了布里渊光谱的测量能力, 提高了黏弹性测量的灵敏性.
    The mechanical properties of cells and tissues play a crucial role in determining biological functions. As a label-free and non-contact mechanical imaging method, Brillouin spectroscopy can characterize viscoelastic changes in samples with high spatial resolution. To sensitively identify small mechanical differences among biological systems, it is important to improve Brillouin scattering efficiency while combining various viscoelastic contrast mechanisms in measurement. This paper presents a high-speed Brillouin spectroscopy based on impulsive stimulated Brillouin scattering. The acoustic oscillation can be excited in a single shot with a pulsed pump laser and detected by a continuous probe laser in the time domain. This time-domain signal can then be transferred to the frequency-domain Brillouin spectrum with high precision. With this method, various viscoelastic information including sound velocity, sound attenuation coefficient, elastic longitudinal storage modulus, and loss modulus can be obtained simultaneously based on derived spectral information. Owing to stimulated scattering and time-domain detection, spectra with a signal-to-noise ratio of 26 dB can be achieved within a millisecond-level spectral integration time. The average measurement precision for storage modulus and loss modulus of the longitudinal elastic modulus are 0.1% and 1%, respectively. With this method, the Brillouin spectra and viscoelastic parameters of typical liquids and polymer materials are measured and compared, providing a comprehensive reference for viscoelastic parameters. We also study the elastic changes in different curing stages of PDMS and make a comparison of viscoelasticity with agarose gel. Moreover, six edible oils are identified based on various viscoelastic contrast mechanisms, which not only provides a new perspective for material identification but also expands the measurement capabilities of Brillouin spectroscopy and enhances the sensitivity of viscoelasticity measurements.
      通信作者: 李岩, liyan@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2200101)资助的课题.
      Corresponding author: Li Yan, liyan@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200101).
    [1]

    Discher D E, Janmey P, Wang Y L 2005 Science 310 1139Google Scholar

    [2]

    Naruse K 2018 J. Smooth Muscle Res. 54 83Google Scholar

    [3]

    Stylianou A, Lekka M, Stylianopoulos T 2018 Nanoscale 10 20930Google Scholar

    [4]

    Lee W M, Reece P J, Marchington R F, Metzger N K, Dholakia K 2007 Nat. Protoc. 2 3226Google Scholar

    [5]

    Kennedy B F, Wijesinghe P, Sampson D D 2017 Nat. Photonics. 11 215Google Scholar

    [6]

    Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803Google Scholar

    [7]

    Dil J G 1982 Rep. Prog. Phys. 45 285Google Scholar

    [8]

    Hickman G D, Harding J M, Carnes M, Pressman A, Kattawar G W, Fry E S 1991 Remote Sens. Environ. 36 165Google Scholar

    [9]

    Scarcelli G, Yun S H 2008 Nat. Photonics. 2 39Google Scholar

    [10]

    Scarcelli G, Yun S H 2012 Opt. Express 20 9197Google Scholar

    [11]

    Zhang J, Scarcelli G 2021 Nat. Protoc. 16 1251Google Scholar

    [12]

    Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo E R, Zhang L, Jaillais Y, Greb T, Belkhadir Y 2016 Sci. Signal. 9 rs5Google Scholar

    [13]

    Conrad C, Gray K M, Stroka K M, Rizvi I, Scarcelli G 2019 Cell Mol. Bioeng. 12 215Google Scholar

    [14]

    Karampatzakis A, Song C Z, Allsopp L P, Filloux A, Rice S A, Cohen Y, Wohland T, Török P 2017 NPJ Biofilms Microbiomes. 3 20Google Scholar

    [15]

    Seiler T G, Shao P, Eltony A, Seiler T, Yun S H 2019 Am. J. Ophthalmol. 202 118Google Scholar

    [16]

    Matsukawa M, Tsubota R, Kawabe M, Fukui K 2014 Ultrasonics 54 1155Google Scholar

    [17]

    Raghunathan R, Zhang J, Wu C, Rippy J, Singh M, Larin K, Scarcelli G 2017 J. Biomed. Opt. 22 086013Google Scholar

    [18]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar

    [19]

    Remer I, Bilenca A 2016 APL Photonics 1 061301Google Scholar

    [20]

    Remer I, Bilenca A 2016 Opt. Lett. 41 926Google Scholar

    [21]

    Remer I, Shaashoua R, Shemesh N, Ben-Zvi A, Bilenca A 2020 Nat. Methods 17 913Google Scholar

    [22]

    Meng Z, Ballmann C W, Petrov G I, Scully M O, Yakovlev V V 2015 Nonlinear Optics Kauai, Hawaii, July 26, 2015 NTh3A.3

    [23]

    Meng Z, Petrov G I, Yakovlev V V 2015 Analyst 140 7160Google Scholar

    [24]

    Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [25]

    Li J R, Le T R, Wei H Y, Li Y 2022 Frontiers in Optics + Laser Science Rochester, New York, October 17, 2022 JW4B.70

    [26]

    Li J R, Zhang H Y, Lu M, Wei H Y, Li Y 2022 Opt. Express 30 29598Google Scholar

    [27]

    Li J R, Le T R, Zhang H Y, Wei H Y, Li Y 2024 Photon. Res. 12 730Google Scholar

    [28]

    Li J R, Zhang H Y, Chen X Y, Le T R, Wei H Y, Li Y 2022 Appl. Phys. Lett. 121 251102Google Scholar

    [29]

    Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G 2019 Nat. Methods 16 969Google Scholar

    [30]

    Dukhin A S, Goetz P J 2009 J. Chem. Phys. 130 124519Google Scholar

    [31]

    Lide D R 2005 CRC Handbook of Chemistry and Physics (CRC Press

    [32]

    Kim D H, Ghaffari R, Lu N, Rogers J A 2012 Annu. Rev. Biomed. Eng. 14 113Google Scholar

    [33]

    Sun Y, Jallerat Q, Szymanski J M, Feinberg A W 2015 Nat. Methods 12 134Google Scholar

  • 图 1  ISBS原理示意图 (a) 外差式ISBS的光路示意图; (b) ISBS过程的能量守恒和动量守恒

    Fig. 1.  The principle of ISBS: (a) Schematic diagram for the optical path of heterodyne ISBS; (b) conservation of energy and momentum in the ISBS process.

    图 2  ISBS光谱测量系统, M1—M5, 反射镜; L1和L4, 球面镜; L2和L3, 消色差透镜; CL, 柱面镜; ND1和ND2, 中性密度滤光片; DM, 二向色镜; TG, 透射光栅; BP1和BP2, 780 nm 带通滤光片; PD1和PD2, 光电探测器

    Fig. 2.  Diagram of ISBS system. M1—M5, mirrors; L1 and L4, spherical lenses; L2 and L3, achromatic lenses; CL, cylindrical lens; ND1 and ND2, neutral density filter; DM, dichroic mirror; TG, transmission grating; BP1 and BP2, 780 nm bandpass filters; PD1 and PD2, photodetector.

    图 3  液体和聚合物纯品的ISBS测量结果、对应光谱及弹性纵模 (a) 典型液体纯品的ISBS时域测量信号; (b) 多种液体及聚合物纯品的ISBS光谱及局部放大图; (c) 由ISBS光谱信息提取的弹性纵模实部(存储模量)和虚部(损耗模量)

    Fig. 3.  ISBS measurement results, spectra, and elastic longitudinal modules of pure liquid and polymer samples: (a) ISBS time-domain signals of typical liquid purities; (b) ISBS spectra and details of various liquid and polymer purities; (c) the real (storage modulus) and imaginary (loss modulus) parts of elastic longitudinal modules extracted from ISBS spectral information.

    图 4  PDMS及琼脂糖凝胶的ISBS光谱和黏弹性测量 (a) 不同固化时间下PDMS的ISBS光谱和(b) 声速测量结果; (c) PDMS与琼脂糖凝胶的ISBS光谱对比

    Fig. 4.  ISBS spectra and viscoelastic measurements of PDMS and agar: (a) ISBS spectra of PDMS and (b) sound velocity under different curing times; (c) comparison of ISBS spectra between PDMS and agar.

    图 5  常见食用油的ISBS光谱及黏弹性鉴别 (a) 常见食用油的ISBS光谱; (b) 常见食用油的声速和声衰减系数, 轴须图表示各样品声速的重叠情况; (c) 基于声速-声衰减系数-弹光系数的三维黏弹性鉴别

    Fig. 5.  ISBS spectra and viscoelastic identification of common edible oils: (a) ISBS spectra of common edible oils; (b) sound velocity and acoustic attenuation coefficients of common edible oils, the rug plot indicates the overlap of the sound velocity for each sample; (c) three-dimensional viscoelastic identification based on sound velocity, acoustic attenuation, and elasto-optic coefficient.

    表 1  典型液体纯品的ISBS光谱信息、声波信息和纵向模量的实验计算值

    Table 1.  Experimentally calculated values of ISBS spectral information, acoustic information, and longitudinal modulus for typical liquid purities.

    样品νB/MHzΔB/MHzV/(m·s–1)α/(dB·cm–1)M'/MPaM''/MPa
    硼酸三甲酯123.09±0.061.54±0.021060.0±0.526.4±0.31028.0±0.97.4±0.1
    正己烷127.03±0.031.73±0.011094.0±0.328.7±0.3790.6±0.46.2±0.1
    甲醇130.19±0.021.51±0.011121.1±0.224.4±0.1994.7±0.36.65±0.02
    异丙醇133.87±0.052.47±0.041152.9±0.438.9±0.61037.9±0.711.1±0.2
    乙酸乙酯134.81±0.041.64±0.011160.9±0.425.7±0.11213.4±0.88.53±0.04
    乙醇135.34±0.031.91±0.021165.5±0.329.7±0.21072.2±0.58.7±0.1
    丙酮137.68±0.051.58±0.011185.7±0.524.2±0.11102.9±0.87.30±0.04
    正戊醇150.17±0.032.78±0.051293.2±0.339.0±0.71361.9±0.614.6±0.3
    油酸166.85±0.127.44±0.061436.8±1.093.9±0.71844.6±2.647.5±0.4
    角鲨烯169.87±0.124.70±0.071462.9±1.058.3±0.91836.9±2.629.4±0.4
    二甲基亚砜173.98±0.082.96±0.031498.2±0.735.9±0.42471.4±2.224.3±0.2
    174.69±0.052.80±0.051504.4±0.433.7±0.62257.6±1.320.9±0.4
    下载: 导出CSV
  • [1]

    Discher D E, Janmey P, Wang Y L 2005 Science 310 1139Google Scholar

    [2]

    Naruse K 2018 J. Smooth Muscle Res. 54 83Google Scholar

    [3]

    Stylianou A, Lekka M, Stylianopoulos T 2018 Nanoscale 10 20930Google Scholar

    [4]

    Lee W M, Reece P J, Marchington R F, Metzger N K, Dholakia K 2007 Nat. Protoc. 2 3226Google Scholar

    [5]

    Kennedy B F, Wijesinghe P, Sampson D D 2017 Nat. Photonics. 11 215Google Scholar

    [6]

    Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803Google Scholar

    [7]

    Dil J G 1982 Rep. Prog. Phys. 45 285Google Scholar

    [8]

    Hickman G D, Harding J M, Carnes M, Pressman A, Kattawar G W, Fry E S 1991 Remote Sens. Environ. 36 165Google Scholar

    [9]

    Scarcelli G, Yun S H 2008 Nat. Photonics. 2 39Google Scholar

    [10]

    Scarcelli G, Yun S H 2012 Opt. Express 20 9197Google Scholar

    [11]

    Zhang J, Scarcelli G 2021 Nat. Protoc. 16 1251Google Scholar

    [12]

    Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo E R, Zhang L, Jaillais Y, Greb T, Belkhadir Y 2016 Sci. Signal. 9 rs5Google Scholar

    [13]

    Conrad C, Gray K M, Stroka K M, Rizvi I, Scarcelli G 2019 Cell Mol. Bioeng. 12 215Google Scholar

    [14]

    Karampatzakis A, Song C Z, Allsopp L P, Filloux A, Rice S A, Cohen Y, Wohland T, Török P 2017 NPJ Biofilms Microbiomes. 3 20Google Scholar

    [15]

    Seiler T G, Shao P, Eltony A, Seiler T, Yun S H 2019 Am. J. Ophthalmol. 202 118Google Scholar

    [16]

    Matsukawa M, Tsubota R, Kawabe M, Fukui K 2014 Ultrasonics 54 1155Google Scholar

    [17]

    Raghunathan R, Zhang J, Wu C, Rippy J, Singh M, Larin K, Scarcelli G 2017 J. Biomed. Opt. 22 086013Google Scholar

    [18]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar

    [19]

    Remer I, Bilenca A 2016 APL Photonics 1 061301Google Scholar

    [20]

    Remer I, Bilenca A 2016 Opt. Lett. 41 926Google Scholar

    [21]

    Remer I, Shaashoua R, Shemesh N, Ben-Zvi A, Bilenca A 2020 Nat. Methods 17 913Google Scholar

    [22]

    Meng Z, Ballmann C W, Petrov G I, Scully M O, Yakovlev V V 2015 Nonlinear Optics Kauai, Hawaii, July 26, 2015 NTh3A.3

    [23]

    Meng Z, Petrov G I, Yakovlev V V 2015 Analyst 140 7160Google Scholar

    [24]

    Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [25]

    Li J R, Le T R, Wei H Y, Li Y 2022 Frontiers in Optics + Laser Science Rochester, New York, October 17, 2022 JW4B.70

    [26]

    Li J R, Zhang H Y, Lu M, Wei H Y, Li Y 2022 Opt. Express 30 29598Google Scholar

    [27]

    Li J R, Le T R, Zhang H Y, Wei H Y, Li Y 2024 Photon. Res. 12 730Google Scholar

    [28]

    Li J R, Zhang H Y, Chen X Y, Le T R, Wei H Y, Li Y 2022 Appl. Phys. Lett. 121 251102Google Scholar

    [29]

    Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G 2019 Nat. Methods 16 969Google Scholar

    [30]

    Dukhin A S, Goetz P J 2009 J. Chem. Phys. 130 124519Google Scholar

    [31]

    Lide D R 2005 CRC Handbook of Chemistry and Physics (CRC Press

    [32]

    Kim D H, Ghaffari R, Lu N, Rogers J A 2012 Annu. Rev. Biomed. Eng. 14 113Google Scholar

    [33]

    Sun Y, Jallerat Q, Szymanski J M, Feinberg A W 2015 Nat. Methods 12 134Google Scholar

  • [1] 贺文君, 侯雅斐, 闫嵩泉, 吴泽鹏, 刘毅, 游亚军, 何剑. 铌酸锂微米光纤模内后向布里渊散射特性研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241329
    [2] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [3] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间. 物理学报, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [4] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [5] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [6] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [7] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [8] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究. 物理学报, 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [9] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究. 物理学报, 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [10] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [11] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [12] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [13] 熊毅, 张向军, 张晓昊, 温诗铸. 电场作用下5CB液晶分子的近壁面层黏弹性的QCM研究. 物理学报, 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [14] 王羽, 欧阳洁, 杨斌鑫. 分数阶Oldroyd-B黏弹性Poiseuille流的Laplace数值反演分析. 物理学报, 2010, 59(10): 6757-6763. doi: 10.7498/aps.59.6757
    [15] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [16] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [17] 杜启振. 各向异性黏弹性介质伪谱法波场模拟. 物理学报, 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [18] 杜启振, 杨慧珠. 裂缝性地层黏弹性地震多波波动方程. 物理学报, 2004, 53(8): 2801-2806. doi: 10.7498/aps.53.2801
    [19] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  1804
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-04-17
  • 上网日期:  2024-05-15
  • 刊出日期:  2024-06-20

/

返回文章
返回