-
细胞和组织的力学特性在决定生物功能中起着至关重要的作用, 布里渊光谱技术作为一种黏弹性显微成像方法, 可以无标记、非接触地以高空间分辨率表征样品的力学特征变化. 为了更加灵敏地识别生物系统的微小力学性质差异, 在提高布里渊散射效率的同时, 结合多种黏弹性对比机制进行测量是需要关注的问题. 本文报道了基于脉冲受激布里渊散射的光谱测量方法, 采用脉冲光激发、连续光时域探测的方式, 通过一次时域测量即可得到完整光谱并根据光谱信息反演样品的多种黏弹性参数. 得益于受激散射和时域探测, 实验中以毫秒级的光谱积分时间即可得到信噪比为26 dB的光谱, 弹性纵模的存储模量和损耗模量的平均测量精度分别达0.1%和1%. 基于此方法, 测量并对比了常见液体及聚合物材料的布里渊光谱, 并研究了不同固化阶段的PDMS弹性变化, 与琼脂糖凝胶进行了对比. 最后, 基于多种黏弹性对比机制对6种食用油进行鉴别, 不仅为物质鉴别提供了新的思路, 也拓展了布里渊光谱的测量能力, 提高了黏弹性测量的灵敏性.The mechanical properties of cells and tissues play a crucial role in determining biological functions. As a label-free and non-contact mechanical imaging method, Brillouin spectroscopy can characterize viscoelastic changes in samples with high spatial resolution. To sensitively identify small mechanical differences among biological systems, it is important to improve Brillouin scattering efficiency while combining various viscoelastic contrast mechanisms in measurement. This paper presents a high-speed Brillouin spectroscopy based on impulsive stimulated Brillouin scattering. The acoustic oscillation can be excited in a single shot with a pulsed pump laser and detected by a continuous probe laser in the time domain. This time-domain signal can then be transferred to the frequency-domain Brillouin spectrum with high precision. With this method, various viscoelastic information including sound velocity, sound attenuation coefficient, elastic longitudinal storage modulus, and loss modulus can be obtained simultaneously based on derived spectral information. Owing to stimulated scattering and time-domain detection, spectra with a signal-to-noise ratio of 26 dB can be achieved within a millisecond-level spectral integration time. The average measurement precision for storage modulus and loss modulus of the longitudinal elastic modulus are 0.1% and 1%, respectively. With this method, the Brillouin spectra and viscoelastic parameters of typical liquids and polymer materials are measured and compared, providing a comprehensive reference for viscoelastic parameters. We also study the elastic changes in different curing stages of PDMS and make a comparison of viscoelasticity with agarose gel. Moreover, six edible oils are identified based on various viscoelastic contrast mechanisms, which not only provides a new perspective for material identification but also expands the measurement capabilities of Brillouin spectroscopy and enhances the sensitivity of viscoelasticity measurements.
-
Keywords:
- Brillouin scattering /
- viscoelasticity /
- biomechanics
[1] Discher D E, Janmey P, Wang Y L 2005 Science 310 1139Google Scholar
[2] Naruse K 2018 J. Smooth Muscle Res. 54 83Google Scholar
[3] Stylianou A, Lekka M, Stylianopoulos T 2018 Nanoscale 10 20930Google Scholar
[4] Lee W M, Reece P J, Marchington R F, Metzger N K, Dholakia K 2007 Nat. Protoc. 2 3226Google Scholar
[5] Kennedy B F, Wijesinghe P, Sampson D D 2017 Nat. Photonics. 11 215Google Scholar
[6] Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803Google Scholar
[7] Dil J G 1982 Rep. Prog. Phys. 45 285Google Scholar
[8] Hickman G D, Harding J M, Carnes M, Pressman A, Kattawar G W, Fry E S 1991 Remote Sens. Environ. 36 165Google Scholar
[9] Scarcelli G, Yun S H 2008 Nat. Photonics. 2 39Google Scholar
[10] Scarcelli G, Yun S H 2012 Opt. Express 20 9197Google Scholar
[11] Zhang J, Scarcelli G 2021 Nat. Protoc. 16 1251Google Scholar
[12] Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo E R, Zhang L, Jaillais Y, Greb T, Belkhadir Y 2016 Sci. Signal. 9 rs5Google Scholar
[13] Conrad C, Gray K M, Stroka K M, Rizvi I, Scarcelli G 2019 Cell Mol. Bioeng. 12 215Google Scholar
[14] Karampatzakis A, Song C Z, Allsopp L P, Filloux A, Rice S A, Cohen Y, Wohland T, Török P 2017 NPJ Biofilms Microbiomes. 3 20Google Scholar
[15] Seiler T G, Shao P, Eltony A, Seiler T, Yun S H 2019 Am. J. Ophthalmol. 202 118Google Scholar
[16] Matsukawa M, Tsubota R, Kawabe M, Fukui K 2014 Ultrasonics 54 1155Google Scholar
[17] Raghunathan R, Zhang J, Wu C, Rippy J, Singh M, Larin K, Scarcelli G 2017 J. Biomed. Opt. 22 086013Google Scholar
[18] Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar
[19] Remer I, Bilenca A 2016 APL Photonics 1 061301Google Scholar
[20] Remer I, Bilenca A 2016 Opt. Lett. 41 926Google Scholar
[21] Remer I, Shaashoua R, Shemesh N, Ben-Zvi A, Bilenca A 2020 Nat. Methods 17 913Google Scholar
[22] Meng Z, Ballmann C W, Petrov G I, Scully M O, Yakovlev V V 2015 Nonlinear Optics Kauai, Hawaii, July 26, 2015 NTh3A.3
[23] Meng Z, Petrov G I, Yakovlev V V 2015 Analyst 140 7160Google Scholar
[24] Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar
[25] Li J R, Le T R, Wei H Y, Li Y 2022 Frontiers in Optics + Laser Science Rochester, New York, October 17, 2022 JW4B.70
[26] Li J R, Zhang H Y, Lu M, Wei H Y, Li Y 2022 Opt. Express 30 29598Google Scholar
[27] Li J R, Le T R, Zhang H Y, Wei H Y, Li Y 2024 Photon. Res. 12 730Google Scholar
[28] Li J R, Zhang H Y, Chen X Y, Le T R, Wei H Y, Li Y 2022 Appl. Phys. Lett. 121 251102Google Scholar
[29] Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G 2019 Nat. Methods 16 969Google Scholar
[30] Dukhin A S, Goetz P J 2009 J. Chem. Phys. 130 124519Google Scholar
[31] Lide D R 2005 CRC Handbook of Chemistry and Physics (CRC Press
[32] Kim D H, Ghaffari R, Lu N, Rogers J A 2012 Annu. Rev. Biomed. Eng. 14 113Google Scholar
[33] Sun Y, Jallerat Q, Szymanski J M, Feinberg A W 2015 Nat. Methods 12 134Google Scholar
-
图 2 ISBS光谱测量系统, M1—M5, 反射镜; L1和L4, 球面镜; L2和L3, 消色差透镜; CL, 柱面镜; ND1和ND2, 中性密度滤光片; DM, 二向色镜; TG, 透射光栅; BP1和BP2, 780 nm 带通滤光片; PD1和PD2, 光电探测器
Fig. 2. Diagram of ISBS system. M1—M5, mirrors; L1 and L4, spherical lenses; L2 and L3, achromatic lenses; CL, cylindrical lens; ND1 and ND2, neutral density filter; DM, dichroic mirror; TG, transmission grating; BP1 and BP2, 780 nm bandpass filters; PD1 and PD2, photodetector.
图 3 液体和聚合物纯品的ISBS测量结果、对应光谱及弹性纵模 (a) 典型液体纯品的ISBS时域测量信号; (b) 多种液体及聚合物纯品的ISBS光谱及局部放大图; (c) 由ISBS光谱信息提取的弹性纵模实部(存储模量)和虚部(损耗模量)
Fig. 3. ISBS measurement results, spectra, and elastic longitudinal modules of pure liquid and polymer samples: (a) ISBS time-domain signals of typical liquid purities; (b) ISBS spectra and details of various liquid and polymer purities; (c) the real (storage modulus) and imaginary (loss modulus) parts of elastic longitudinal modules extracted from ISBS spectral information.
图 5 常见食用油的ISBS光谱及黏弹性鉴别 (a) 常见食用油的ISBS光谱; (b) 常见食用油的声速和声衰减系数, 轴须图表示各样品声速的重叠情况; (c) 基于声速-声衰减系数-弹光系数的三维黏弹性鉴别
Fig. 5. ISBS spectra and viscoelastic identification of common edible oils: (a) ISBS spectra of common edible oils; (b) sound velocity and acoustic attenuation coefficients of common edible oils, the rug plot indicates the overlap of the sound velocity for each sample; (c) three-dimensional viscoelastic identification based on sound velocity, acoustic attenuation, and elasto-optic coefficient.
表 1 典型液体纯品的ISBS光谱信息、声波信息和纵向模量的实验计算值
Table 1. Experimentally calculated values of ISBS spectral information, acoustic information, and longitudinal modulus for typical liquid purities.
样品 νB/MHz ΔB/MHz V/(m·s–1) α/(dB·cm–1) M'/MPa M''/MPa 硼酸三甲酯 123.09±0.06 1.54±0.02 1060.0±0.5 26.4±0.3 1028.0±0.9 7.4±0.1 正己烷 127.03±0.03 1.73±0.01 1094.0±0.3 28.7±0.3 790.6±0.4 6.2±0.1 甲醇 130.19±0.02 1.51±0.01 1121.1±0.2 24.4±0.1 994.7±0.3 6.65±0.02 异丙醇 133.87±0.05 2.47±0.04 1152.9±0.4 38.9±0.6 1037.9±0.7 11.1±0.2 乙酸乙酯 134.81±0.04 1.64±0.01 1160.9±0.4 25.7±0.1 1213.4±0.8 8.53±0.04 乙醇 135.34±0.03 1.91±0.02 1165.5±0.3 29.7±0.2 1072.2±0.5 8.7±0.1 丙酮 137.68±0.05 1.58±0.01 1185.7±0.5 24.2±0.1 1102.9±0.8 7.30±0.04 正戊醇 150.17±0.03 2.78±0.05 1293.2±0.3 39.0±0.7 1361.9±0.6 14.6±0.3 油酸 166.85±0.12 7.44±0.06 1436.8±1.0 93.9±0.7 1844.6±2.6 47.5±0.4 角鲨烯 169.87±0.12 4.70±0.07 1462.9±1.0 58.3±0.9 1836.9±2.6 29.4±0.4 二甲基亚砜 173.98±0.08 2.96±0.03 1498.2±0.7 35.9±0.4 2471.4±2.2 24.3±0.2 水 174.69±0.05 2.80±0.05 1504.4±0.4 33.7±0.6 2257.6±1.3 20.9±0.4 -
[1] Discher D E, Janmey P, Wang Y L 2005 Science 310 1139Google Scholar
[2] Naruse K 2018 J. Smooth Muscle Res. 54 83Google Scholar
[3] Stylianou A, Lekka M, Stylianopoulos T 2018 Nanoscale 10 20930Google Scholar
[4] Lee W M, Reece P J, Marchington R F, Metzger N K, Dholakia K 2007 Nat. Protoc. 2 3226Google Scholar
[5] Kennedy B F, Wijesinghe P, Sampson D D 2017 Nat. Photonics. 11 215Google Scholar
[6] Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803Google Scholar
[7] Dil J G 1982 Rep. Prog. Phys. 45 285Google Scholar
[8] Hickman G D, Harding J M, Carnes M, Pressman A, Kattawar G W, Fry E S 1991 Remote Sens. Environ. 36 165Google Scholar
[9] Scarcelli G, Yun S H 2008 Nat. Photonics. 2 39Google Scholar
[10] Scarcelli G, Yun S H 2012 Opt. Express 20 9197Google Scholar
[11] Zhang J, Scarcelli G 2021 Nat. Protoc. 16 1251Google Scholar
[12] Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo E R, Zhang L, Jaillais Y, Greb T, Belkhadir Y 2016 Sci. Signal. 9 rs5Google Scholar
[13] Conrad C, Gray K M, Stroka K M, Rizvi I, Scarcelli G 2019 Cell Mol. Bioeng. 12 215Google Scholar
[14] Karampatzakis A, Song C Z, Allsopp L P, Filloux A, Rice S A, Cohen Y, Wohland T, Török P 2017 NPJ Biofilms Microbiomes. 3 20Google Scholar
[15] Seiler T G, Shao P, Eltony A, Seiler T, Yun S H 2019 Am. J. Ophthalmol. 202 118Google Scholar
[16] Matsukawa M, Tsubota R, Kawabe M, Fukui K 2014 Ultrasonics 54 1155Google Scholar
[17] Raghunathan R, Zhang J, Wu C, Rippy J, Singh M, Larin K, Scarcelli G 2017 J. Biomed. Opt. 22 086013Google Scholar
[18] Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar
[19] Remer I, Bilenca A 2016 APL Photonics 1 061301Google Scholar
[20] Remer I, Bilenca A 2016 Opt. Lett. 41 926Google Scholar
[21] Remer I, Shaashoua R, Shemesh N, Ben-Zvi A, Bilenca A 2020 Nat. Methods 17 913Google Scholar
[22] Meng Z, Ballmann C W, Petrov G I, Scully M O, Yakovlev V V 2015 Nonlinear Optics Kauai, Hawaii, July 26, 2015 NTh3A.3
[23] Meng Z, Petrov G I, Yakovlev V V 2015 Analyst 140 7160Google Scholar
[24] Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar
[25] Li J R, Le T R, Wei H Y, Li Y 2022 Frontiers in Optics + Laser Science Rochester, New York, October 17, 2022 JW4B.70
[26] Li J R, Zhang H Y, Lu M, Wei H Y, Li Y 2022 Opt. Express 30 29598Google Scholar
[27] Li J R, Le T R, Zhang H Y, Wei H Y, Li Y 2024 Photon. Res. 12 730Google Scholar
[28] Li J R, Zhang H Y, Chen X Y, Le T R, Wei H Y, Li Y 2022 Appl. Phys. Lett. 121 251102Google Scholar
[29] Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G 2019 Nat. Methods 16 969Google Scholar
[30] Dukhin A S, Goetz P J 2009 J. Chem. Phys. 130 124519Google Scholar
[31] Lide D R 2005 CRC Handbook of Chemistry and Physics (CRC Press
[32] Kim D H, Ghaffari R, Lu N, Rogers J A 2012 Annu. Rev. Biomed. Eng. 14 113Google Scholar
[33] Sun Y, Jallerat Q, Szymanski J M, Feinberg A W 2015 Nat. Methods 12 134Google Scholar
计量
- 文章访问数: 1558
- PDF下载量: 60
- 被引次数: 0