搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢终端金刚石薄膜生长及其表面结构

马孟宇 蔚翠 何泽召 郭建超 刘庆彬 冯志红

引用本文:
Citation:

氢终端金刚石薄膜生长及其表面结构

马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红

Growth and surface structrue of hydrogen terminal diamond thin films

Ma Meng-Yu, Yu Cui, He Ze-Zhao, Guo Jian-Chao, Liu Qing-Bin, Feng Zhi-Hong
PDF
HTML
导出引用
  • 氢终端金刚石的导电性问题是目前限制其在器件领域应用的关键因素. 传统的氢终端金刚石制备工艺由于金刚石中含有杂质元素以及表面的加工损伤的存在, 限制了氢终端金刚石的电特性. 在金刚石衬底上直接外延一层高纯、表面平整的氢终端金刚石薄膜成为一种可行方案, 但该方案仍存在薄膜质量表征困难, 表面粗糙度较大等问题. 本文采用微波等离子体化学气相沉积(CVD)技术, 在含氮CVD金刚石衬底上外延一层亚微米级厚度金刚石薄膜, 并研究分析了不同甲烷浓度对金刚石薄膜生长以及导电性能的影响. 测试结果显示: 金刚石薄膜生长厚度为230—810 nm, 且外延层氮浓度含量低于1×1016 atom/cm3, 不同的甲烷浓度生长时, 金刚石外延层表面出现了三种生长模式, 这主要与金刚石的生长和刻蚀作用相关. 经过短时间生长后的金刚石薄膜表面为氢终端(2×1: H)结构, 而氧、氮元素在其中的占比极低, 这使得生长后的金刚石薄膜具有P型导电特性. 霍尔测试结果显示, 甲烷浓度为4%条件下生长的氢终端金刚石薄膜导电性最好, 其方块电阻为4981 Ω/square, 空穴迁移率为207 cm2/(V·s), 有效地提升了氢终端金刚石电特性, 为推进大功率金刚石器件发展应用起到支撑作用.
    The conductivity of hydrogen-terminated diamond is a limiting factor in its application in field-effect transistor devices. The traditional preparation process hinders the improvement of the electrical properties of hydrogen-terminated diamond due to impurity elements in the diamond bulk and surface damage caused by processing near the diamond surface. To overcome this, researchers have explored the epitaxial growth of a high-purity and flat-surfaced diamond thin film on a diamond substrate. However, this approach still faces challenges in film characterization and achieving high surface smoothness. In this study, microwave plasma chemical vapor deposition technology is used to epitaxially grow a sub-micron thick diamond film on a nitrogen-doping chemical vapor deposition diamond substrate of 10 mm × 10 mm × 0.5 mm in size. The influence of methane concentration on the growth and conductivity of diamond film is investigated. The test results reveal that the growth thickness of the diamond film ranges from 230 to 810 nm, and the nitrogen concentration in the epitaxial layer is lower than 1×1016 atom/cm3. Three growth modes are observed for the homoepitaxial growth of the diamond thin film under different methane concentrations. A methane concentration of 4% enables two-dimensional planar growth of diamond, resulting in a smooth and flat surface with a roughness of 0.225 nm (10 μm×10 μm). The formation of different surface morphologies is attributed to the growing process and etching process of diamond. Surface low-energy electron diffraction testing indicates that the surface of the diamond film undergoes a structural transition from oxygen terminal (1×1: O) to hydrogen terminal (2×1: H) when grown for a short period of time. X-ray photoelectron spectroscopy analysis reveals an extremely low ratio of oxygen element to nitrogen element, giving the grown diamond film P-type conductivity characteristics. The Hall test results demonstrate that the hydrogen-terminated diamond film grown with a methane concentration of 4% exhibits the highest conductivity, with a square resistance of 4981 Ω/square and a hole mobility of 207 cm2/(V·s). This enhanced conductivity can be attributed to the lower defect density observed under these specific conditions. The findings of this study effectively improve the electrical properties of hydrogen-terminated diamond, and contribute to the development and practical application of high-power diamond devices.
      通信作者: 蔚翠, yucui1@163.com ; 冯志红, ga917vv@163.com
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3608603)资助的课题.
      Corresponding author: Yu Cui, yucui1@163.com ; Feng Zhi-Hong, ga917vv@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3608603).
    [1]

    王艳丰, 王宏兴 2020 人工晶体学报 49 2139Google Scholar

    Wang Y F, Wang H X 2020 J. Synth. Cryst. 49 2139Google Scholar

    [2]

    Zhang C M, Zheng Y B, Jiang Z G, Lü X Y, Hou X, Hu S A, Liu J W 2010 Chin. Phys. Lett. 27 088103Google Scholar

    [3]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101Google Scholar

    [4]

    邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃 2022 物理学报 71 088102Google Scholar

    Xing Y F, Ren Z Y, Zhang J F, Su K, Ding S C, He Q, Zhang J C, Zhang C F, Hao Y 2022 Acta Phys. Sin. 71 088102Google Scholar

    [5]

    Crawford K G, Maini I, Macdonald D A, Moran D A J 2021 Prog. Surf. Sci. 96 100613Google Scholar

    [6]

    Okushi H, Watanabe H, Ri S 2022 J. Cryst. Growth 237 1269

    [7]

    Sung G R, Hiroaki Y B, Sadanori Y, Hideyuki W, Daisuke T, Hideyo O 2002 J. Cryst. Growth 235 300Google Scholar

    [8]

    Achard J, Silva F, Tallaire A, Bonnin X, A Gicquel 2007 J. Phys. D: Appl. Phys. 40 6175

    [9]

    Tallaire A, Achard J, Silva F, Sussmann R S, Gicquel A 2005 Diamond Relat. Mater. 14 249Google Scholar

    [10]

    Hirama K, Takayanagi H, Yamauchi S, Yang J H, Kawarada H, Umezawa H 2008 Appl. Phys. Lett. 92 480

    [11]

    Kubovi M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889Google Scholar

    [12]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99Google Scholar

    [13]

    刘聪, 汪建华, 翁俊 2015 物理学报 64 028101Google Scholar

    Liu C, Wang J H, Weng J 2015 Acta Phys. Sin. 64 028101Google Scholar

    [14]

    Bushuev E V, Yurov V Y, Bolshakov A P, Ralchenko V G, Khomich A A, Antonova I A, Ashkinazi E E, Shershulin V A, Pashinin V P, Konov V I 2017 Diamond Relat. Mater. 72 61Google Scholar

    [15]

    耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌 2018 物理学报 67 248101Google Scholar

    Geng C W, Xia Y H, Zhao H Y, Fu Q M, Ma Z B 2018 Acta Phys. Sin. 67 248101Google Scholar

    [16]

    Shu G Y, Ralchenko V G, Bolshakov A P, Zavedeev E V, Khomich A A, Pivovarov P A, Ashkinazi E E, Konov V I, Dai B, Han J C, Zhu J Q 2020 CrystEngComm 22 2138Google Scholar

    [17]

    张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃 2020 物理学报 69 028101Google Scholar

    Zhang J F, Xu J M, Ren Z Y, He Q, Xu S R, Zhang C F, Zhang J C, Hao Y 2020 Acta Phys. Sin. 69 028101Google Scholar

    [18]

    Ren Z Y, Liu J, Su K, Zhang J F, Zhang J C, Xu S R, Hao Y 2019 Chin. Phys. B 28 128103Google Scholar

    [19]

    Liu K, Zhang S, Liu B, Xu M, Zhu J 2020 Carbon 169 440Google Scholar

    [20]

    Sear M J, Schenk A K, Anton T, Alastair S, Pakes C I 2018 Phys. Status. Solidi A 215 18002831

    [21]

    Attrash M, Kuntumalla M K, Michaelson S, Hoffman A 2020 J. Phys. Chem. C 124 5657

    [22]

    Alba G, Eon D, Villar M P, Chicot G, Letellier J, Pernot J, Araujo D 2020 Surfaces 3 61Google Scholar

    [23]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101Google Scholar

    [24]

    任泽阳 2019 博士学位论文(西安: 西安电子科技大学)

    Ren Z Y 2019 Ph. D. Disserertation (Xi’an: Xi’an University of Electronic Science and technology

    [25]

    Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J, Guo J C, Feng Z H, Li C M 2018 J. Mater. Sci. 53 13030Google Scholar

    [26]

    Liu J L, Yu H S, Si W T, Ju P Z, Xiao H Y, Xiao L W, Jun J C, Liang X Y, Hai T, Li C M 2020 Diamond Relat. Mater. 104 107750Google Scholar

  • 图 1  SIMS测试金刚石氮原子浓度梯度

    Fig. 1.  SIMS testing of diamond nitrogen atom concentration gradient.

    图 2  不同甲烷浓度样品生长后的表面形貌 (a) OM照片; (b) AFM照片; (c) 表面高度曲线图

    Fig. 2.  Surface morphology of samples with different methane concentrations after growth: (a) OM image; (b) AFM image; (c) surface height curves.

    图 3  样品2生长前后表面的LEED图片

    Fig. 3.  LEED images of the surface of #2 before and after growth.

    图 4  样品2生长前后表面的XPS全谱

    Fig. 4.  XPS spectra of the surface of #2 before and after growth.

    图 5  样品2生长前后表面的C 1s图谱

    Fig. 5.  C 1s spectra of the surface of #2 before and after growth.

    图 6  氢终端金刚石霍尔测试结果

    Fig. 6.  Hall test results of hydrogen-terminated diamond.

    表 1  MPCVD外延生长金刚石薄膜的实验参数

    Table 1.  Experimental parameters for MPCVD epitaxial growth of diamond thin films.

    样品1样品2样品3
    输出功率/W350035003500
    温度/ºC860860860
    H2流量/sccm190192194
    CH4浓度/%543
    下载: 导出CSV
  • [1]

    王艳丰, 王宏兴 2020 人工晶体学报 49 2139Google Scholar

    Wang Y F, Wang H X 2020 J. Synth. Cryst. 49 2139Google Scholar

    [2]

    Zhang C M, Zheng Y B, Jiang Z G, Lü X Y, Hou X, Hu S A, Liu J W 2010 Chin. Phys. Lett. 27 088103Google Scholar

    [3]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101Google Scholar

    [4]

    邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃 2022 物理学报 71 088102Google Scholar

    Xing Y F, Ren Z Y, Zhang J F, Su K, Ding S C, He Q, Zhang J C, Zhang C F, Hao Y 2022 Acta Phys. Sin. 71 088102Google Scholar

    [5]

    Crawford K G, Maini I, Macdonald D A, Moran D A J 2021 Prog. Surf. Sci. 96 100613Google Scholar

    [6]

    Okushi H, Watanabe H, Ri S 2022 J. Cryst. Growth 237 1269

    [7]

    Sung G R, Hiroaki Y B, Sadanori Y, Hideyuki W, Daisuke T, Hideyo O 2002 J. Cryst. Growth 235 300Google Scholar

    [8]

    Achard J, Silva F, Tallaire A, Bonnin X, A Gicquel 2007 J. Phys. D: Appl. Phys. 40 6175

    [9]

    Tallaire A, Achard J, Silva F, Sussmann R S, Gicquel A 2005 Diamond Relat. Mater. 14 249Google Scholar

    [10]

    Hirama K, Takayanagi H, Yamauchi S, Yang J H, Kawarada H, Umezawa H 2008 Appl. Phys. Lett. 92 480

    [11]

    Kubovi M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889Google Scholar

    [12]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99Google Scholar

    [13]

    刘聪, 汪建华, 翁俊 2015 物理学报 64 028101Google Scholar

    Liu C, Wang J H, Weng J 2015 Acta Phys. Sin. 64 028101Google Scholar

    [14]

    Bushuev E V, Yurov V Y, Bolshakov A P, Ralchenko V G, Khomich A A, Antonova I A, Ashkinazi E E, Shershulin V A, Pashinin V P, Konov V I 2017 Diamond Relat. Mater. 72 61Google Scholar

    [15]

    耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌 2018 物理学报 67 248101Google Scholar

    Geng C W, Xia Y H, Zhao H Y, Fu Q M, Ma Z B 2018 Acta Phys. Sin. 67 248101Google Scholar

    [16]

    Shu G Y, Ralchenko V G, Bolshakov A P, Zavedeev E V, Khomich A A, Pivovarov P A, Ashkinazi E E, Konov V I, Dai B, Han J C, Zhu J Q 2020 CrystEngComm 22 2138Google Scholar

    [17]

    张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃 2020 物理学报 69 028101Google Scholar

    Zhang J F, Xu J M, Ren Z Y, He Q, Xu S R, Zhang C F, Zhang J C, Hao Y 2020 Acta Phys. Sin. 69 028101Google Scholar

    [18]

    Ren Z Y, Liu J, Su K, Zhang J F, Zhang J C, Xu S R, Hao Y 2019 Chin. Phys. B 28 128103Google Scholar

    [19]

    Liu K, Zhang S, Liu B, Xu M, Zhu J 2020 Carbon 169 440Google Scholar

    [20]

    Sear M J, Schenk A K, Anton T, Alastair S, Pakes C I 2018 Phys. Status. Solidi A 215 18002831

    [21]

    Attrash M, Kuntumalla M K, Michaelson S, Hoffman A 2020 J. Phys. Chem. C 124 5657

    [22]

    Alba G, Eon D, Villar M P, Chicot G, Letellier J, Pernot J, Araujo D 2020 Surfaces 3 61Google Scholar

    [23]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101Google Scholar

    [24]

    任泽阳 2019 博士学位论文(西安: 西安电子科技大学)

    Ren Z Y 2019 Ph. D. Disserertation (Xi’an: Xi’an University of Electronic Science and technology

    [25]

    Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J, Guo J C, Feng Z H, Li C M 2018 J. Mater. Sci. 53 13030Google Scholar

    [26]

    Liu J L, Yu H S, Si W T, Ju P Z, Xiao H Y, Xiao L W, Jun J C, Liang X Y, Hai T, Li C M 2020 Diamond Relat. Mater. 104 107750Google Scholar

  • [1] 刘厚盛, 郭世峰, 陈明, 张国凯, 郭崇, 高学栋, 蔚翠. 微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究. 物理学报, 2025, 74(2): 028102. doi: 10.7498/aps.74.20241438
    [2] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能. 物理学报, 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [3] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [4] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性. 物理学报, 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [5] 贾燕伟, 何健, 何萌, 朱肖华, 赵上熳, 刘金龙, 陈良贤, 魏俊俊, 李成明. h-BN/diamond异质结的制备与沟道载流子输运性质. 物理学报, 2022, 71(22): 228101. doi: 10.7498/aps.71.20220995
    [6] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能. 物理学报, 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [7] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [8] 赵小强, 赵学童, 许超, 李巍巍, 任路路, 廖瑞金, 李建英. ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展. 物理学报, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [9] 李忠辉, 罗伟科, 杨乾坤, 李亮, 周建军, 董逊, 彭大青, 张东国, 潘磊, 李传皓. 金属有机物化学气相沉积同质外延GaN薄膜表面形貌的改善. 物理学报, 2017, 66(10): 106101. doi: 10.7498/aps.66.106101
    [10] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] 姜金龙, 黄浩, 王琼, 王善民, 魏智强, 杨华, 郝俊英. 沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响. 物理学报, 2014, 63(2): 028104. doi: 10.7498/aps.63.028104
    [13] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究. 物理学报, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [14] 袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文. Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析. 物理学报, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [15] 向军, 郭银涛, 褚艳秋, 周广振. 双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能. 物理学报, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [16] 刘峰斌, 汪家道, 陈大融. 氢、氧终端掺硼金刚石薄膜的电子结构. 物理学报, 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [17] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [18] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [19] 张卫, 王季陶, 万永中. 人造金刚石低压气相生长的相图计算. 物理学报, 1997, 46(6): 1237-1242. doi: 10.7498/aps.46.1237
    [20] 张文军, 韩立, 胡博, 涨仿清, 陈光华. 织构金刚石薄膜的成核与生长. 物理学报, 1996, 45(1): 88-93. doi: 10.7498/aps.45.88
计量
  • 文章访问数:  2934
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-02-01
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回