搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能

何俊松 罗丰 王剑 杨士冠 翟立军 程林 刘虹霞 张艳 李艳丽 孙志刚 胡季帆

引用本文:
Citation:

熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能

何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆

Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning

He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan
PDF
HTML
导出引用
  • TiNiSn基 half-Heusler高温热电材料具有较高的功率因子, 但其也具有较高的晶格热导率, 这极大地阻碍了其热电性能的提升. 本文采用熔融旋甩快淬与放电等离子烧结工艺制备TiNiCoxSn (x = 0—0.05)样品, 研究磁性Co元素掺杂对材料的相组成、微观结构和热电性能. 结果表明, 该制备工艺能够直接获得纳米晶的TiNiCoxSn样品. 在纳米晶影响下的样品的热导率明显低于块体材料的热导率, 平均降幅约为17.8%. 在Co掺杂后样品的晶粒尺寸进一步降低, 与TiNiSn基体相比, TiNiCoxSn样品的热导率显著降低, 最大降幅约为38.9%, 其中晶格热导率最低值为3.19 W/(m·K), 最大降幅约为42.6%. 随着Co掺杂量x的增大TiNiCoxSn样品出现n/p转变, 电导率随x增大而逐渐下降, 电输运性能劣化, 功率因子缓慢减小, 其中TiNiSn样品在700 K时获得29.56 W/(m·K2)的最高功率因子. ZT值随Co掺杂量x的增大而逐渐降低, TiNiSn样品在900 K时的最大ZT值为0.48. 本工作表明采用熔融旋甩制备工艺及磁性Co掺杂能够有效降低TiNiSn材料的热导率.
    Although TiNiSn-based half-Heusler thermoelectric materials obtain high power factors, their high lattice thermal conductivity greatly hinders the improvement of thermoelectric properties. In this work, TiNiCoxSn (x = 0–0.05) samples are prepared by melt spinning combined with spark plasma sintering method, and their phase, microstructure and thermoelectric properties are studied. The XRD results show that the main phase of all samples is TiNiSn phase, and no any other impurity phases are found, indicating that the high purity single phase can be prepared by rapid quenching process combined with SPS process. In the solidification process, the large cooling rate (105–106 K/s) is conducive to obtaining the uniform nanocrystalline structure. The grains are closely packed, with grain sizes in a range of 200–600 nm. The grain sizes decrease to 50–400 nm for the Co-doping samples, which indicates that Co doping can reduce the grain size. For the x = 0 sample, the thermal conductivity of the rapid quenching sample is significantly lower than that of bulk sample, with an average decrease of about 17.8%. Compared with the TiNiSn matrix, the Co-doping sample has the thermal conductivity that decreases significantly, and the maximum decrease can reach about 38.9%. The minimum value of lattice thermal conductivity of TiNiCoxSn samples is 3.19 W/(m·K). Therefore, Co doping can significantly reduce the κl values of TiNiCoxSn (x = 0.01–0.05) samples. With the increase of Co doping amount x, n/p transition is observed in the TiNiCoxSn samples, resulting in gradually reducing the conductivity and the power factor, and finally deteriorating the electrical transport performance, of which, the TiNiSn sample obtains the highest power factor of 29.56 W/(m·K2) at 700 K. The ZT value decreases with the Co doping amount x increasing, and the maximum ZT value of TiNiSn sample at 900 K is 0.48. This work shows that the thermal conductivity of TiNiSn can be effectively reduced by using the melt spinning process and magnetic Co doping.
      通信作者: 孙志刚, sun_zg@whut.edu.cn ; 胡季帆, 2019064@tyust.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12174297, 12204342)、山西省基础研究计划 (批准号: 202103021224283, 202203021212323)、太原科技大学科研启动基金项目(批准号: 20222015, 20222002)、来晋工作优秀博士奖励项目(批准号: 20222039, 20222040)和山西省高等学校科技创新项目(批准号: 2022L288)资助的课题.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn ; Hu Ji-Fan, 2019064@tyust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342), the Basic Research Program of Shanxi Province, China (Grant Nos. 202103021224283, 202203021212323), the Scientific Research Start-up Fund of Taiyuan University of Science and Technology (Grant Nos. 20222015, 20222002), the Outstanding Doctoral Award Program for Working in Shanxi Province (Grant Nos. 20222039, 20222040), and the Science and Technology Innovation Project of Higher Education Institutions in Shanxi Province, China (Grant No. 2022L288).
    [1]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Cheng L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [2]

    Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H, Sun Z G 2022 ACS Appl. Mater. Interfaces. 14 45503Google Scholar

    [3]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [4]

    Shi L, Chen J, Zhang G, Li B 2012 Phys. Lett. A 376 978Google Scholar

    [5]

    Ouyang Y, Zhang Z, Li D, Chen J, Zhang G 2019 Ann. Phys. Berlin 531 4Google Scholar

    [6]

    He J, Hu Y X, Li D F, Chen J 2021 Nano Res. 15 3804

    [7]

    Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K H, Myung N V 2008 Electrochimica Acta 53 8103Google Scholar

    [8]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [9]

    Gelbstein Y, Rosenberg Y, Sadia Y, Dariel M P 2010 J. Phys. Chem. C. 114 13126

    [10]

    Komisarchik G, Gelbstein Y, Fuks D 2017 Intermetallics 89 16Google Scholar

    [11]

    Liu H T, Sun Q, Zhong Y, Deng Q, Gan L, Lü F L, Shi X L, Chen Z G, Ang R 2022 Nano Energy 91 106706Google Scholar

    [12]

    Pochet P, Caliste D 2012 Mat. Sci. Semicon. Proc. 15 675Google Scholar

    [13]

    Khan M R, Gopidi H R, Wlazło M, Malyi O I 2023 J. Phys. Chem. Lett. 14 1962Google Scholar

    [14]

    Kaller M, Fuks D, Gelbstein Y 2017 J. Alloy Compd. 729 446Google Scholar

    [15]

    Chauhan N S, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, Dhar A 2018 ACS Appl. Energy Mater. 1 757Google Scholar

    [16]

    Lim W Y S, Zhang D, Duran S S F, Tan X Y, Tan C K I, Xu J, Suwardi A 2021 Front Mater. 8 745

    [17]

    Wang J, Luo F, Zhu C, Wang J, He X, Zhang Y, Liu H, Sun Z G 2023 J. Mater. Chem. 11 4056Google Scholar

    [18]

    Zhu C, Wang J, Zhu X Q, Zhang S, Xu F, Luo F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 J. Mater. Chem. A 11 1268Google Scholar

    [19]

    陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚 2023 物理学报 72 068401Google Scholar

    Chen S Q, Wang J, Yang Z, Zhu C, Luo F, Zhu X Q, Xu F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 Acta Phys. Sin. 72 068401Google Scholar

    [20]

    Santos R, Yamini S A, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Berry T, Fu C, Auffermann G, Fecher G H, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H, Felser C 2017 Chem. Mater. 29 7042Google Scholar

    [22]

    Downie R, Maclaren D, Bos J W 2014 J. Mater. Chem. A 2 6107Google Scholar

    [23]

    Sanad M F, Shalan A E, Abdellatif S O, Serea E S A, Adly M S, Ahsan M A 2020 Top Curr. Chem. 378 48Google Scholar

    [24]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [25]

    Lü W Y, Liu W D, Li M, Hong M, Guo K, Luo J, Xing J, Sun Q, Xu S, Zou J 2022 Chem. Eng. J. 446 137278Google Scholar

    [26]

    Hu B, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [27]

    Liu H X, Zhang S, Zhang Y, Zong S T, Li W, Zhu C, Luo F, Wang J, Sun Z G 2022 ACS Appl. Energy Mater. 5 15093Google Scholar

    [28]

    Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder J G, Zhao X B 2017 Adv. Mater. 29 1605884Google Scholar

    [29]

    Van Du N, Nam W H, Cho J Y, Binh N V, Huy P T, Tuan D A, Shin W H, Lee S 2021 J. Alloy Compd. 886 161293Google Scholar

    [30]

    Pei Y Z, Shi X Y, Lalonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [31]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634Google Scholar

    [32]

    Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G 2016 Science 351 141Google Scholar

    [33]

    Hohl H, Ramirez A P, Goldmann C, Ernst G, Wölfing B, Bucher E 1999 J. Phys. Condens. Mat. 11 1697Google Scholar

    [34]

    Chauhan N S, Raghuvanshi P R, Tyagi K, Johari K K, Tyagi L, Gahtori B, Bathula S, Bhattacharya A, Mahanti S D, Singh V N 2020 J. Phys. Condens. Mat. 124 8584

    [35]

    Shutoh N, Sakurada S 2005 J. Alloy Compd. 389 204Google Scholar

    [36]

    Cho J, Park T, Bae K W, Kim H S, Choi S M, Kim S I, Kim S W 2021 Materials 14 4029Google Scholar

    [37]

    He J S, Shen Y C, Zhai L J, Luo F, Zhang Y, Liu H X, Hu J F, Sun Z G 2024 J. Alloy Compd. 975 172808Google Scholar

    [38]

    Wang J F, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [39]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [40]

    Dresselhaus M, Chen G, Ren Z F, Dresselhaus G, Henry A, Fleurial J P 2009 JOM 61 86Google Scholar

    [41]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [42]

    Kim K S, Kim Y M, Mun H, Kim J, Park J, Borisevich A Y, Lee K H, Kim S W 2017 Adv. Mater. 29 1702091Google Scholar

    [43]

    Katayama T, Kim S W, Kimura Y, Mishima Y 2003 J. Electron. Mater. 32 1160Google Scholar

    [44]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [45]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [46]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J F, Liu H X, Sun Z G 2022 J. Mater. Chem. A 10 9655Google Scholar

    [47]

    Romaka V, Stadnyk Y V, Fruchart D, Dominuk T, Romaka L, Rogl P, Goryn A M 2009 Semiconductors 43 1124Google Scholar

    [48]

    罗丰2023 博士学位论文 (武汉: 武汉理工大学)

    Luo F 2023 Ph. D. Dissertation (Wuhan: Wuhan University of Technology

    [49]

    An D C, Wang J J, Zhang J, Zhai X, Kang Z P, Fan W H, Yan J, Liu Y Q, Lu L, Jia C L, Wuttig M, Cojocaru-Mirédin O, Chen S P, Wang W X, Snyder G J, Yu Y 2021 Energy Environ. Sci. 14 5469Google Scholar

    [50]

    Drymiotis F, Lashley J C, Fisk Z, Peterson E, Nakatsuji S 2003 Philos. Mag. 83 3169Google Scholar

    [51]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [52]

    Baranovskiy A, Harush M, Amouyal Y 2019 Adv. Theor. Simul. 2 54

    [53]

    Chi H, Liu W, Sun K, Su X L, Wang G Y, Lošt'ák P, Kucek V, Drašar Č, Uher C 2013 Phys. Rev. B 88 045202Google Scholar

    [54]

    Lkhagvasuren E, Fu C, Fecher G H, Auffermann G, Kreiner G, Schnelle W, Felser C 2017 J. Phys. D Appl. Phys. 50 425502Google Scholar

    [55]

    Gong B, Li Y, Liu F S, Zhu J X, Wang X, Ao W Q, Zhang C H, Li J Q, Xie H P, Zhu T J 2019 ACS Appl. Mater. Interface 11 13397Google Scholar

    [56]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z F 2017 Chem. Mater. 29 14

    [57]

    Yan J X, Liu F S, Ma G H, Gong B, Zhu J X, Wang X, Ao W Q, Zhang C H, Li Y, Li J Q 2018 Scripta Mater. 157 129Google Scholar

    [58]

    Liu Y T, Xie H H, Fu C G, Snyder G J, Zhao X B, Zhu T J 2015 J. Mater. Chem. A 3 22716Google Scholar

  • 图 1  TiNiCoxSn样品的(a) XRD图谱和(b)晶格常数

    Fig. 1.  (a) XRD patterns and (b) lattice constants of TiNiCoxSn samples.

    图 2  TiNiCoxSn样品的背散射图 (a) x = 0; (b) x = 0.01; (c) x = 0.03; (d) x = 0.05

    Fig. 2.  Backscattering images of TiNiCoxSn samples: (a) x = 0; (b) x = 0.01; (c) x = 0.03; (d) x = 0.05.

    图 3  TiNiCoxSn薄带的SEM图 (a) TiNiSn微观图; (b) TiNiSn局部放大图; (c) TiNiCo0.03Sn微观图; (d) TiNiCo0.03Sn局部放大图

    Fig. 3.  SEM images of TiNiCoxSn ribbons: (a) Microscopic image of TiNiSn; (b) local enlarged image of TiNiSn ribbon; (c) microscopic image of TiNiCo0.03Sn; (d) local enlarged image of TiNiCo0.03Sn ribbon.

    图 4  TiNiCoxSn块体截面的EPMA图 (a) TiNiSn微观图; (b) TiNiSn局部放大图; (c) TiNiCo0.03Sn微观图; (d) TiNiCo0.03Sn局部放大图

    Fig. 4.  EPMA diagrams of TiNiCoxSn block section: (a) Microscopic image of TiNiSn; (b) local enlarged image of TiNiSn sample; (c) microscopic image of TiNiCo0.03Sn; (d) local enlarged image of TiNiCo0.03Sn sample.

    图 5  TiNiCoxSn样品参数随温度及掺杂量x的变化 (a), (b) Seebeck系数; (c), (d)电导率; (e), (f)功率因子

    Fig. 5.  Variation of TiNiCoxSn samples parameters with temperature and the doping amount x: (a), (b) Seebeck coefficients; (c), (d) conductivities; (e), (f) power factors.

    图 6  TiNiCoxSn样品加权迁移率μw随温度(a)与掺杂量x (b)的变化关系

    Fig. 6.  Relation of weighted mobility μw with temperature (a) and doping amount x (b) of TiNiCoxSn samples.

    图 7  TiNiCoxSn样品的载流子浓度 nH和载流子迁移率μH

    Fig. 7.  Hall carrier concentrations (nH) and carrier mobilities (μH) of TiNiCoxSn samples.

    图 8  (a) TiNiCoxSn样品在室温下磁化强度随磁场的变化关系; (b) TiNiCoxSn样品的铁磁性; (c) 零点附近局部放大图; (d) 最大饱和磁化强度随掺杂量的关系

    Fig. 8.  (a) Room temperature M-H curves of TiNiCoxSn samples, (b) the ferromagnetic singals of TiNiCoxSn samples, (c) the enlarged M-H curves near zero point; (d) relation of saturation magnetization with doping amount x.

    图 9  (a) 热导率κtot随温度变化的关系; (b) κtot随掺杂量x的变化关系; (c) 电子热导率κe随温度的变化关系; (d) κe随掺杂量x的变化关系; (e)晶格热导率κl随温度的变化关系; (f) κl随掺杂量x的变化关系

    Fig. 9.  (a) Thermal conductivities κtot as a function of temperature; (b) κtot as a function of doping amount x; (c) electronic thermal conductivities κe as a function of temperature; (d) κe as a function of doping amount x; (e) lattice thermal conductivities κl as a function of temperature; (e) thermal conductivities κl as a function of temperature; (f) dependence of κl on doping amount x.

    图 10  (a) TiNiCoxSn样品的ZT随温度的变化关系; (b) TiNiSn样品的ZT值与其他工作的对比[5458]

    Fig. 10.  (a) Relation of ZT of TiNiCoxSn samples with the temperature; (b) comparison of ZT value of TiNiSn samples in this work with other works[5458].

  • [1]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Cheng L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [2]

    Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H, Sun Z G 2022 ACS Appl. Mater. Interfaces. 14 45503Google Scholar

    [3]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [4]

    Shi L, Chen J, Zhang G, Li B 2012 Phys. Lett. A 376 978Google Scholar

    [5]

    Ouyang Y, Zhang Z, Li D, Chen J, Zhang G 2019 Ann. Phys. Berlin 531 4Google Scholar

    [6]

    He J, Hu Y X, Li D F, Chen J 2021 Nano Res. 15 3804

    [7]

    Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K H, Myung N V 2008 Electrochimica Acta 53 8103Google Scholar

    [8]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [9]

    Gelbstein Y, Rosenberg Y, Sadia Y, Dariel M P 2010 J. Phys. Chem. C. 114 13126

    [10]

    Komisarchik G, Gelbstein Y, Fuks D 2017 Intermetallics 89 16Google Scholar

    [11]

    Liu H T, Sun Q, Zhong Y, Deng Q, Gan L, Lü F L, Shi X L, Chen Z G, Ang R 2022 Nano Energy 91 106706Google Scholar

    [12]

    Pochet P, Caliste D 2012 Mat. Sci. Semicon. Proc. 15 675Google Scholar

    [13]

    Khan M R, Gopidi H R, Wlazło M, Malyi O I 2023 J. Phys. Chem. Lett. 14 1962Google Scholar

    [14]

    Kaller M, Fuks D, Gelbstein Y 2017 J. Alloy Compd. 729 446Google Scholar

    [15]

    Chauhan N S, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, Dhar A 2018 ACS Appl. Energy Mater. 1 757Google Scholar

    [16]

    Lim W Y S, Zhang D, Duran S S F, Tan X Y, Tan C K I, Xu J, Suwardi A 2021 Front Mater. 8 745

    [17]

    Wang J, Luo F, Zhu C, Wang J, He X, Zhang Y, Liu H, Sun Z G 2023 J. Mater. Chem. 11 4056Google Scholar

    [18]

    Zhu C, Wang J, Zhu X Q, Zhang S, Xu F, Luo F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 J. Mater. Chem. A 11 1268Google Scholar

    [19]

    陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚 2023 物理学报 72 068401Google Scholar

    Chen S Q, Wang J, Yang Z, Zhu C, Luo F, Zhu X Q, Xu F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 Acta Phys. Sin. 72 068401Google Scholar

    [20]

    Santos R, Yamini S A, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Berry T, Fu C, Auffermann G, Fecher G H, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H, Felser C 2017 Chem. Mater. 29 7042Google Scholar

    [22]

    Downie R, Maclaren D, Bos J W 2014 J. Mater. Chem. A 2 6107Google Scholar

    [23]

    Sanad M F, Shalan A E, Abdellatif S O, Serea E S A, Adly M S, Ahsan M A 2020 Top Curr. Chem. 378 48Google Scholar

    [24]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [25]

    Lü W Y, Liu W D, Li M, Hong M, Guo K, Luo J, Xing J, Sun Q, Xu S, Zou J 2022 Chem. Eng. J. 446 137278Google Scholar

    [26]

    Hu B, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [27]

    Liu H X, Zhang S, Zhang Y, Zong S T, Li W, Zhu C, Luo F, Wang J, Sun Z G 2022 ACS Appl. Energy Mater. 5 15093Google Scholar

    [28]

    Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder J G, Zhao X B 2017 Adv. Mater. 29 1605884Google Scholar

    [29]

    Van Du N, Nam W H, Cho J Y, Binh N V, Huy P T, Tuan D A, Shin W H, Lee S 2021 J. Alloy Compd. 886 161293Google Scholar

    [30]

    Pei Y Z, Shi X Y, Lalonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [31]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634Google Scholar

    [32]

    Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G 2016 Science 351 141Google Scholar

    [33]

    Hohl H, Ramirez A P, Goldmann C, Ernst G, Wölfing B, Bucher E 1999 J. Phys. Condens. Mat. 11 1697Google Scholar

    [34]

    Chauhan N S, Raghuvanshi P R, Tyagi K, Johari K K, Tyagi L, Gahtori B, Bathula S, Bhattacharya A, Mahanti S D, Singh V N 2020 J. Phys. Condens. Mat. 124 8584

    [35]

    Shutoh N, Sakurada S 2005 J. Alloy Compd. 389 204Google Scholar

    [36]

    Cho J, Park T, Bae K W, Kim H S, Choi S M, Kim S I, Kim S W 2021 Materials 14 4029Google Scholar

    [37]

    He J S, Shen Y C, Zhai L J, Luo F, Zhang Y, Liu H X, Hu J F, Sun Z G 2024 J. Alloy Compd. 975 172808Google Scholar

    [38]

    Wang J F, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [39]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [40]

    Dresselhaus M, Chen G, Ren Z F, Dresselhaus G, Henry A, Fleurial J P 2009 JOM 61 86Google Scholar

    [41]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [42]

    Kim K S, Kim Y M, Mun H, Kim J, Park J, Borisevich A Y, Lee K H, Kim S W 2017 Adv. Mater. 29 1702091Google Scholar

    [43]

    Katayama T, Kim S W, Kimura Y, Mishima Y 2003 J. Electron. Mater. 32 1160Google Scholar

    [44]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [45]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [46]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J F, Liu H X, Sun Z G 2022 J. Mater. Chem. A 10 9655Google Scholar

    [47]

    Romaka V, Stadnyk Y V, Fruchart D, Dominuk T, Romaka L, Rogl P, Goryn A M 2009 Semiconductors 43 1124Google Scholar

    [48]

    罗丰2023 博士学位论文 (武汉: 武汉理工大学)

    Luo F 2023 Ph. D. Dissertation (Wuhan: Wuhan University of Technology

    [49]

    An D C, Wang J J, Zhang J, Zhai X, Kang Z P, Fan W H, Yan J, Liu Y Q, Lu L, Jia C L, Wuttig M, Cojocaru-Mirédin O, Chen S P, Wang W X, Snyder G J, Yu Y 2021 Energy Environ. Sci. 14 5469Google Scholar

    [50]

    Drymiotis F, Lashley J C, Fisk Z, Peterson E, Nakatsuji S 2003 Philos. Mag. 83 3169Google Scholar

    [51]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [52]

    Baranovskiy A, Harush M, Amouyal Y 2019 Adv. Theor. Simul. 2 54

    [53]

    Chi H, Liu W, Sun K, Su X L, Wang G Y, Lošt'ák P, Kucek V, Drašar Č, Uher C 2013 Phys. Rev. B 88 045202Google Scholar

    [54]

    Lkhagvasuren E, Fu C, Fecher G H, Auffermann G, Kreiner G, Schnelle W, Felser C 2017 J. Phys. D Appl. Phys. 50 425502Google Scholar

    [55]

    Gong B, Li Y, Liu F S, Zhu J X, Wang X, Ao W Q, Zhang C H, Li J Q, Xie H P, Zhu T J 2019 ACS Appl. Mater. Interface 11 13397Google Scholar

    [56]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z F 2017 Chem. Mater. 29 14

    [57]

    Yan J X, Liu F S, Ma G H, Gong B, Zhu J X, Wang X, Ao W Q, Zhang C H, Li Y, Li J Q 2018 Scripta Mater. 157 129Google Scholar

    [58]

    Liu Y T, Xie H H, Fu C G, Snyder G J, Zhao X B, Zhu T J 2015 J. Mater. Chem. A 3 22716Google Scholar

  • [1] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 物理学报, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [2] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [3] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [4] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [5] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [6] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [9] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [10] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 物理学报, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [11] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [12] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [13] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [18] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质. 物理学报, 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  795
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-03-01
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回