搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微尺度光学偶极阱的一维单原子阵列的实验制备

刘岩鑫 王志辉 管世军 王勤霞 张鹏飞 李刚 张天才

引用本文:
Citation:

基于微尺度光学偶极阱的一维单原子阵列的实验制备

刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才

Experimental realization of one-dimensional single-atom array based on microscale optical dipole traps

Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai
PDF
HTML
导出引用
  • 光学偶极阱俘获的中性原子阵列是多体物理、量子计算、量子模拟等领域的重要实验平台. 本文详细介绍了制备包含40个铯原子的一维均匀单原子阵列的实验过程, 包括偶极阱阵列的产生装置、原子阵列荧光成像以及偶极阱阵列均匀性优化. 偶极阱阵列的非均匀性主要是由声光偏转器(AOD)衍射效率的非线性和多频率射频信号在功率放大过程中的互调效应引起. 测量偶极阱光强和受俘获原子光频移的起伏并反馈优化施加于AOD多频率射频信号的相位和振幅, 将偶极阱阵列的强度均匀性优化为2%. 另外, 实验测量了偶极阱阵列内原子的振荡频率、装载率和寿命的均匀性. 结果显示, 振荡频率均匀性为2%; 单原子平均装载率为58%, 阱中原子的光谱一致性为3%; 单原子暗阱平均寿命约为6(1) s, 不同原子寿命的起伏为8%.
    Neutral atom array serves as a crucial experimental platform for studying many-body physics, quantum computing, and quantum simulation. In this work, we describe in detail the experimental process of preparing a one-dimensional homogeneous single atom array containing 40 Cs atoms, including the dipole trap array generation device, atomic array fluorescence imaging, and the uniformity optimization of the dipole trap array. The beam waist of the dipole trap is about 1.8 μm, and the spatial resolution of the imaging system is higher than 1.55 μm. The non-uniformity of dipole trap array is mainly caused by the intermodulation effect of multi-tone signal during amplification. The uniformity of the dipole trap array is optimized to 2% (Fig. (a)) by measuring the fluctuations of the dipole trap intensity and the light shift of trapped atom, and providing feedback to adjust the phase and amplitude applied to the multi-tone RF signal on acousto-optic deflectors. Furthermore, the uniformity of oscillation frequency, loading rate, and lifetime for trapped atom in the dipole trap array are measured. These results show that oscillation frequency has a uniformity within 2% (Fig. (b)); mean loading rate is around 58% with a uniformity within 3%; and mean lifetime of single atom in dark trap is around 6(1) s with a uniformity within 8%.
      通信作者: 李刚, gangli@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278)和山西省“1331 工程”重点学科建设基金资助的课题.
      Corresponding author: Li Gang, gangli@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278) and the Fund for “133 Project” Key Subjects Construction of Shanxi Province, China.
    [1]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [2]

    Bruzewicz C D, McConnell R, Chiaverini J, Sage J M 2016 Nat. Commun. 7 13005Google Scholar

    [3]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Castellano A D, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [4]

    Singh K, Anand S, Pocklington A, Kemp J T, Bernien H 2022 Phy. Rev. X 12 011040

    [5]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [6]

    Labuhn H, Barredo D, Ravets S, Léséleuc S D, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [7]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vladan Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [8]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [9]

    Norcia M A, Cairncross W B, Barnes K, et al. 2023 Phys. Rew. X 13 041034

    [10]

    Singh K, Bradley C E, Anand S, Ramesh V, White R, Bernien H 2023 Science 380 126Google Scholar

    [11]

    Evered S J, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li S H, Geim A A, Wang T T, Maskara N, Levine H, Semeghini G, Greiner M, Vuletic V, Lukin M D 2023 Nature 622 268Google Scholar

    [12]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2023 Nature 604 457Google Scholar

    [13]

    Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Ataides J P B, Maskara N, Cong I, Gao X, Rodriguez P S, Karolyshyn T, Semeghini G, Gullans M J, Greiner M, Vuletic V, Lukin M D 2024 Nature 626 58Google Scholar

    [14]

    Barredo D, De Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [15]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Lukin M D 2016 Science 354 1024Google Scholar

    [16]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057

    [17]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Lukin M D 2021 Science 374 1242Google Scholar

    [18]

    Sergi J F, Joseph V, Alexandre D 2024 arXiv: 2402.02852 [cond-mat.quant-gas]

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T C 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Deist E, Gerber J A, Lu Y H, Zeiher J, Stamper-Kurn D M 2022 Phys. Rev. Lett. 128 083201Google Scholar

    [21]

    Ðorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, Lukin M D 2021 Science 373 1511Google Scholar

    [22]

    Deist E, Lu Y H, Ho J, Pasha M K, Zeiher J, Yan Z, Stamper-Kurn D M 2022 Phys. Rev. Lett. 129 203602Google Scholar

    [23]

    Yan Z J, Jacquelyn H, Lu Y H, Masson S J, Asenjo-Garcia A, Stamper-Kurn D M 2023 Phys. Rev. Lett. 131 253603Google Scholar

    [24]

    Li S K, Li G, Wu W, Fan Q, TianY L, Yang P F, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [25]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [26]

    Sortais Y R P, Marion H, Tuchendler C, Lance A M, Lamare M, Fournet P, Armellin C, Mercier R, Messin G, Browaeys A, Grangier P 2007 Phys. Rev. A 75 013406Google Scholar

    [27]

    Sheng C, He X, Xu P, Guo R, Wang K, Xiong Z, Liu M, Wang J, Zhan M 2018 Phys. Rev. Lett. 121 240501Google Scholar

  • 图 1  偶极阱阵列以及成像光路示意图, 插图为AOD工作原理示意图

    Fig. 1.  Schematic diagram of the dipole trap array and imaging optics, and the inset demonstrates the operational principle of AOD.

    图 2  偶极阱阵列CCD成像图及强度分布

    Fig. 2.  CCD imaging and intensity distribution of the dipole trap array.

    图 3  (a), (b)成像系统校准与分辨率测量, 通过成像系统分别对780 nm单模保偏光纤端面成像(a)及测试靶成像(b); (c)图(b)中第8组刻线的第3个条纹放大图; (d)图(a)灰度值强度分布; (e), (f)分别对应于水平刻线和竖直刻线强度分布图

    Fig. 3.  Calibration and resolution measurement of the imaging system: (a), (b) Single-mode polarization-maintaining fiber end-face is imaged by the imaging system, and a test target is imaged as well; (c) zooms in on the third stripe of the eighth group of patterns in Fig. (b); (d) the intensity distribution of the grayscale values in Fig. (a); (e), (f) correspond to intensity distribution maps of horizontal and vertical stripes, respectively.

    图 4  实验过程与单原子阵列荧光成像 (a)实验时序图; (b)单原子信号统计直方图(图(c)中从左往右第13个偶极阱), 曝光时间为30 ms, 测量次数为3600, 浅蓝色线为双峰高斯函数拟合曲线; (c)单原子阵列荧光信号叠加图, 叠加次数为500

    Fig. 4.  Experimental process and fluorescence imaging of a single-atom array: (a) Experimental timing sequence; (b) histogram of single-atom signals (the 13th dipole trap from left to right in Fig. (c)), with an exposure time of 30 ms and a total measurement times of 3600, the light blue line represents the fitted curve using a bimodal Gaussian function; (c) fluorescence signal superimposed image of single-atom array, with a total of 500 superimpositions.

    图 5  单原子阵列光频移和振荡频率均匀性 (a)不同偶极阱引起原子光频移分布图, 插图实验结果可用于确定偶极阱 13 中原子的光频移; (b)不同偶极阱内原子振荡频率分布图, 插图为偶极阱 13 通过释放再俘获方法测量得到的实验结果, 用于确定原子的振荡频率. 图中的误差棒为拟合误差

    Fig. 5.  Uniformity of light shift and oscillation frequency in single-atom array: (a) Distribution of light shift caused by different dipole trap, with inset showing the experimental results that can be used to determine the light frequency shift of atoms in dipole trap 13; (b) distribution of oscillation frequencies within different dipole traps, with inset indicating the experimental results obtained through the release-recapture method for measuring dipole trap 13, which can be used to determine the oscillation frequency of atoms. The error bars in panels (a) and (b) represent fitting errors.

    图 6  单原子阵列装载率和寿命均匀性 (a)不同偶极阱单原子装载概率分布图, 误差棒为多次测量结果的标准差; (b)不同偶极阱内单原子暗阱寿命分布图, 误差棒为拟合误差, 插图为偶极阱13暗阱寿命测量结果

    Fig. 6.  Uniformity of loading probability and lifetime in the single-atom array: (a) Distribution of loading probability in different dipole trap, the error bar is the standard deviation of multiple measurement results; (b) distribution of lifetime in different dipole trap, the error bars represent fitting errors, the inset presents the measurement results of the dark trap lifetime in dipole trap 13.

  • [1]

    Weiss D S, Saffman M 2017 Phys. Today 70 44Google Scholar

    [2]

    Bruzewicz C D, McConnell R, Chiaverini J, Sage J M 2016 Nat. Commun. 7 13005Google Scholar

    [3]

    Gong M, Chen M C, Zheng Y R, Wang S Y, Zha C, Deng H, Yan Z G, Rong H, Wu Y L, Li S W, Chen F S, Zhao Y W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Castellano A D, Wang H H, Peng C Z, Lu C Y, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 122 110501Google Scholar

    [4]

    Singh K, Anand S, Pocklington A, Kemp J T, Bernien H 2022 Phy. Rev. X 12 011040

    [5]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [6]

    Labuhn H, Barredo D, Ravets S, Léséleuc S D, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [7]

    Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vladan Vuletić V, Lukin M D 2021 Nature 595 227Google Scholar

    [8]

    Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233Google Scholar

    [9]

    Norcia M A, Cairncross W B, Barnes K, et al. 2023 Phys. Rew. X 13 041034

    [10]

    Singh K, Bradley C E, Anand S, Ramesh V, White R, Bernien H 2023 Science 380 126Google Scholar

    [11]

    Evered S J, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li S H, Geim A A, Wang T T, Maskara N, Levine H, Semeghini G, Greiner M, Vuletic V, Lukin M D 2023 Nature 622 268Google Scholar

    [12]

    Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2023 Nature 604 457Google Scholar

    [13]

    Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Ataides J P B, Maskara N, Cong I, Gao X, Rodriguez P S, Karolyshyn T, Semeghini G, Gullans M J, Greiner M, Vuletic V, Lukin M D 2024 Nature 626 58Google Scholar

    [14]

    Barredo D, De Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 354 1021Google Scholar

    [15]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Lukin M D 2016 Science 354 1024Google Scholar

    [16]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057

    [17]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Lukin M D 2021 Science 374 1242Google Scholar

    [18]

    Sergi J F, Joseph V, Alexandre D 2024 arXiv: 2402.02852 [cond-mat.quant-gas]

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T C 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Deist E, Gerber J A, Lu Y H, Zeiher J, Stamper-Kurn D M 2022 Phys. Rev. Lett. 128 083201Google Scholar

    [21]

    Ðorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, Lukin M D 2021 Science 373 1511Google Scholar

    [22]

    Deist E, Lu Y H, Ho J, Pasha M K, Zeiher J, Yan Z, Stamper-Kurn D M 2022 Phys. Rev. Lett. 129 203602Google Scholar

    [23]

    Yan Z J, Jacquelyn H, Lu Y H, Masson S J, Asenjo-Garcia A, Stamper-Kurn D M 2023 Phys. Rev. Lett. 131 253603Google Scholar

    [24]

    Li S K, Li G, Wu W, Fan Q, TianY L, Yang P F, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104Google Scholar

    [25]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [26]

    Sortais Y R P, Marion H, Tuchendler C, Lance A M, Lamare M, Fournet P, Armellin C, Mercier R, Messin G, Browaeys A, Grangier P 2007 Phys. Rev. A 75 013406Google Scholar

    [27]

    Sheng C, He X, Xu P, Guo R, Wang K, Xiong Z, Liu M, Wang J, Zhan M 2018 Phys. Rev. Lett. 121 240501Google Scholar

  • [1] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响. 物理学报, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题. 物理学报, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [3] 吴宇恺, 段路明. 离子阱量子计算规模化的研究进展. 物理学报, 2023, 72(23): 230302. doi: 10.7498/aps.72.20231128
    [4] 范桁. 量子计算纠错取得突破性进展. 物理学报, 2023, 72(7): 070303. doi: 10.7498/aps.72.20230330
    [5] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [6] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [7] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [8] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [9] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [10] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] 凡洪剑, 李江, 王丽华, 樊春海, 柳华杰. 基于DNA折纸模板的铁原子阵列构建及其信息加密应用. 物理学报, 2021, 70(6): 068702. doi: 10.7498/aps.70.20201438
    [13] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [14] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [15] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [18] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [19] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [20] 李德荣, 吕晓华, 吴 萍, 骆清铭, 陈 伟, 曾绍群. 声光偏转器扫描飞秒激光的时间色散补偿. 物理学报, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
计量
  • 文章访问数:  2366
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-25
  • 上网日期:  2024-03-30
  • 刊出日期:  2024-05-20

/

返回文章
返回