搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德伯原子Stark效应射频电场测量灵敏度研究

韩小萱 孙光祖 郝丽萍 白素英 焦月春

引用本文:
Citation:

基于里德伯原子Stark效应射频电场测量灵敏度研究

韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春

Sensitivity of radio-frequency electric field sensor based on Rydberg Stark effect

Han Xiao-Xuan, Sun Guang-Zu, Hao Li-Ping, Bai Su-Ying, Jiao Yue-Chun
PDF
HTML
导出引用
  • 里德伯原子极化率大, 在外加电场作用下原子能级发生Stark分裂和频移, 可实现里德伯原子高灵敏电场传感器的研究. 采用Shirley的简化不含时Floquet哈密顿量模型, 计算了Cs里德伯原子的AC Stark能谱, 修正后与实验上测得的弱场中Cs里德伯原子的DC Stark离子能谱拟合, 在获得60D5/2和70D5/2里德伯原子态极化率$ {\alpha _{{\text{DC}}}} $的同时实现低频弱场灵敏度的计算. 并计算了Cs里德伯原子60D5/2态频率在0—500 GHz范围内振荡电场中的AC Stark能级频移量, 对里德伯原子传感器在其宽光谱范围内的灵敏度进行定量分析, 实现任意场频率最佳灵敏度的计算, 为里德伯原子传感器的研究提供理论基础.
    Rydberg atoms hold special attraction in electric applications due to their large transition electric dipole moments and huge polarization, which leads to a strong response of atom to electric fields. In radio-frequency (RF) fields, the Rydberg levels are AC Stark shift and splitting, which can realize the study of high-sensitivity electric field sensor of Rydberg atoms. In this work, we use the simpler Shirley’s time-independent Floquet Hamiltonian model to calculate the AC Stark energy spectrum of Cs Rydberg atoms. This model can reduce the basic Hamiltonian into such a Hamiltonian that includes only those Rydberg states that have direct dipole-allowed transitions with the target state, thereby significantly improving the speed of computation. The accuracy of the calculation is proved by fitting with the calculated frequency shift of DC Stark energy levels in the weak fields, and the polarizability of 60D5/2 and 70D5/2 Rydberg atomic states are obtained by fitting with the measured ion spectra of DC Stark Cs ultra-cold Rydberg atoms in magneto-optical trap. In addition, we calculate the AC Stark shift of Cs Rydberg atom $ \left| {60{{\text{D}}_{5/2}},{m_j} = 1/2} \right\rangle $ state in electric fields with different frequencies with ε = 100 mV/m. Rydberg atoms provide a structured spectrum of sensitivity to electric fields due to strong resonant interaction and off-resonant interaction with many dipole-allowed transitions to nearby Rydberg states. This kind of the frequency response structure is of significance to a broadband sensor. And we calculate the sensitivity and the scaling of the signal-to-noise ratio (SNR), β, varying with detuning from the $ \left| {60{{\text{D}}_{5/2}}} \right\rangle \to \left| {61{{\text{P}}_{3/2}}} \right\rangle $ transition. The value of β allows one to use the result for any Rydberg state sensor to determine the SNR for any Ε in a 1 s measurement. Therefrom, Rydberg sensor can preferentially detect many RF frequencies spreading across its carrier spectral range without modification while effectively rejecting large portions where the atom response is significantly weaker, and the signal depends primarily on the detuning of the RF field to the nearest resonance which does not convey the RF frequency directly.
      通信作者: 焦月春, ycjiao@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104337, 12204292, 12120101004)、山西省高等学校科技创新项目(批准号: 2021L438, 2022L268)和山西省基础研究计划(批准号: 202203021212018, 202203021212405)资助的课题.
      Corresponding author: Jiao Yue-Chun, ycjiao@sxu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 12104337, 12204292, 12120101004), the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi, China (Grant Nos. 2021L438, 2022L268), and the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202203021212018, 202203021212405).
    [1]

    Fabre C, Gross M, Raimond J M, Haroche S 1983 J. Phys. B 16 L671Google Scholar

    [2]

    Hansen W 1983 J. Phys. B. 16 933Google Scholar

    [3]

    Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711Google Scholar

    [4]

    Fabre C, Haroche S 1975 Opt. Commun. 15 254Google Scholar

    [5]

    Shirley J H 1965 Phys. Rev. 138 B979Google Scholar

    [6]

    Meyer D H, Castillo Z A, Cox K C, Kunz P D 2020 J. Phys. B 53 034001Google Scholar

    [7]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [8]

    Yang W G, Jing M Y, Zhang H, Zhang L J, Xiao L T, Jia S T 2023 Phys. Rev. Appl. 19 064021Google Scholar

    [9]

    张临杰, 景明勇, 张好 2022 山西大学学报 45 712Google Scholar

    Zhang L J, Jing M Y, Zhang H 2022 J. Shanxi Univ. 45 712Google Scholar

    [10]

    Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001Google Scholar

    [11]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832Google Scholar

    [12]

    Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028Google Scholar

    [13]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [14]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar

    [15]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar

    [16]

    Hu J L, Jiao Y C, He Y H, Zhang H, Zhang L J, Zhao J M, Jia S T 2023 EPJ Quantum Tech. 10 51Google Scholar

    [17]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [18]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [19]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [20]

    Liu Z K, Zhang L H, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Nat. Commun. 13 1997Google Scholar

    [21]

    Zhou F, Jia F D, Liu X B, Yu Y H, Mei J, Zhang J, Xie F, Zhong Z P 2023 J. Phys. B 56 025501Google Scholar

    [22]

    Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F, Zhong Z P 2023 Phys. Rev. A 107 043102Google Scholar

    [23]

    Li X H, Cui Y, Hao J H, Zhou F, Wang Y X, Jia F D, Zhang J, Xie F, Zhong Z P 2023 Opt. Express 31 38165Google Scholar

    [24]

    杨凯, 安强, 姚佳伟, 毛瑞棋, 林沂, 刘燚, 付云起 2022 光学学报 42 1528002Google Scholar

    Yang K, An Q, Yao J W, Mao R Q, Lin Y, Liu Y, Fu Y Q 2022 Acta Opt. Sin. 42 1528002Google Scholar

    [25]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419Google Scholar

    [26]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Appl. 5 034003Google Scholar

    [27]

    Khadjavi A, Lurio A, Happer W 1968 Phys. Rev. 167 128Google Scholar

    [28]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251Google Scholar

    [29]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [30]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [31]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar

    [32]

    Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photon. 11 40Google Scholar

  • 图 1  理论计算 Cs 原子(a) $ \left| {60{{\text{D}}_{5/2}}, {m_j} = 5/2} \right\rangle $和(b) $ \left| {70{{\text{D}}_{5/2}}, {m_j} = 5/2} \right\rangle $态的Stark能谱, 红色虚线为AC Stark能谱, 黑色实线为校准后的DC Stark能谱

    Fig. 1.  Calculated Stark spectra for Cs Rydberg atom of (a) $ \left| {60{{\text{D}}_{5/2}}, {m_j} = 5/2} \right\rangle $ and (b) $ \left| {70{{\text{D}}_{5/2}}, {m_j} = 5/2} \right\rangle $ state. The red dotted line is the AC Stark spectrum, and the black solid line is the Stark map in a DC electric field on a field axis scaled such that the rms fields.

    图 2  实验测的x方向70D5/2里德伯原子 Stark 谱, 黑、红和绿色点线分别为理论计算的mj = 1/2, 3/2和5/2的Stark 谱

    Fig. 2.  Measurements of the Stark spectrum for 70D5/2 Rydberg atom in the x-direction, and the black, red, and green dotted lines show the calculation Stark spectra of mj = 1/2, 3/2, and 5/2, respectively.

    图 3  Cs里德伯原子60D5/2态在 ε = 100 mV/m不同频率射频场中的AC Stark频移, 其中临近的共振态用黑色虚线标定

    Fig. 3.  AC Stark shifts of the 60D5/2 state in RF field with ε = 100 mV/m. The adjacent resonant state is labeled with a black dashed line.

    图 4  在低频DC场中, 测量时间t = 1 s, 原子数N = 103 (104, 105, 106)的$ \left| {60{{\text{D}}_{5/2}}, {m_j} = 1/2} \right\rangle $Cs里德伯原子的最小可检测场与射频频率的关系

    Fig. 4.  In a quasi-DC field, the minimum detectable field in a 1 s measurement vs. RF frequency using a $ \left| {60{{\text{D}}_{5/2}}, {m_j} = 1/2} \right\rangle $ target state with N = 103 (104, 105, 106) Cs Rydberg atoms.

    图 5  测量时间为1 s的最小可检测场和信噪比缩放因子β (红色实线)与$ \left| {60{{\text{D}}_{5/2}}} \right\rangle \to \left| {61{{\text{P}}_{3/2}}} \right\rangle $射频共振失谐量的关系, 其中三角形、正方形和五边形分别对应β = 1, 1—2和 2

    Fig. 5.  The minimum detectable field in a 1 s measurement and the scaling of the SNR (red solid), β, versus detuning of RF transition from the $ \left| {60{{\text{D}}_{5/2}}} \right\rangle \to $$ \left| {61{{\text{P}}_{3/2}}} \right\rangle $. The triangle, square, and pentagon symbols match correspond to β = 1, 2 or somewhere in between, respectively.

    表 1  实验测量极化率与计算60D5/2和70D5/2态极化率的比较

    Table 1.  Comparisons of the measurement and calculation of the polarizability for 60D5/2 and 70D5/2 Rydberg atom.

    状态 极化率实验值/
    (MHz·cm2/V2)
    极化率理论值/
    (MHz·cm2/V2)
    $ 60{{\text{D}}_{5/2, 1/2}} $ –5007.11 –4984.80
    $ 60{{\text{D}}_{5/2, 3/2}} $ –3620.61 –3633.78
    $ 60{{\text{D}}_{5/2, 5/2}} $ 281.19 280.93
    $ 70{{\text{D}}_{5/2, 1/2}} $ –15455.87 –15432.29
    $ 70{{\text{D}}_{5/2, 3/2}} $ –11160.68 –11171.34
    $ 70{{\text{D}}_{5/2, 5/2}} $ 835.18 833.77
    下载: 导出CSV
  • [1]

    Fabre C, Gross M, Raimond J M, Haroche S 1983 J. Phys. B 16 L671Google Scholar

    [2]

    Hansen W 1983 J. Phys. B. 16 933Google Scholar

    [3]

    Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711Google Scholar

    [4]

    Fabre C, Haroche S 1975 Opt. Commun. 15 254Google Scholar

    [5]

    Shirley J H 1965 Phys. Rev. 138 B979Google Scholar

    [6]

    Meyer D H, Castillo Z A, Cox K C, Kunz P D 2020 J. Phys. B 53 034001Google Scholar

    [7]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [8]

    Yang W G, Jing M Y, Zhang H, Zhang L J, Xiao L T, Jia S T 2023 Phys. Rev. Appl. 19 064021Google Scholar

    [9]

    张临杰, 景明勇, 张好 2022 山西大学学报 45 712Google Scholar

    Zhang L J, Jing M Y, Zhang H 2022 J. Shanxi Univ. 45 712Google Scholar

    [10]

    Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001Google Scholar

    [11]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832Google Scholar

    [12]

    Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028Google Scholar

    [13]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [14]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar

    [15]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar

    [16]

    Hu J L, Jiao Y C, He Y H, Zhang H, Zhang L J, Zhao J M, Jia S T 2023 EPJ Quantum Tech. 10 51Google Scholar

    [17]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [18]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [19]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [20]

    Liu Z K, Zhang L H, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Nat. Commun. 13 1997Google Scholar

    [21]

    Zhou F, Jia F D, Liu X B, Yu Y H, Mei J, Zhang J, Xie F, Zhong Z P 2023 J. Phys. B 56 025501Google Scholar

    [22]

    Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F, Zhong Z P 2023 Phys. Rev. A 107 043102Google Scholar

    [23]

    Li X H, Cui Y, Hao J H, Zhou F, Wang Y X, Jia F D, Zhang J, Xie F, Zhong Z P 2023 Opt. Express 31 38165Google Scholar

    [24]

    杨凯, 安强, 姚佳伟, 毛瑞棋, 林沂, 刘燚, 付云起 2022 光学学报 42 1528002Google Scholar

    Yang K, An Q, Yao J W, Mao R Q, Lin Y, Liu Y, Fu Y Q 2022 Acta Opt. Sin. 42 1528002Google Scholar

    [25]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419Google Scholar

    [26]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Appl. 5 034003Google Scholar

    [27]

    Khadjavi A, Lurio A, Happer W 1968 Phys. Rev. 167 128Google Scholar

    [28]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251Google Scholar

    [29]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [30]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [31]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar

    [32]

    Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photon. 11 40Google Scholar

  • [1] 温涛, 马宇航, 王德全, 谌浩然, 李艳芳, 许洋, 王志广. 基于巨磁阻抗效应的双模态型低噪声大量程磁传感器. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241498
    [2] 彭治钢, 白豪杰, 刘方, 李洋, 何欢, 李培, 贺朝会, 李永宏. 质子累积辐照效应对CMOS图像传感器饱和输出的影响研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241352
    [3] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [4] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [5] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [6] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211420
    [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [8] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [9] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [10] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [11] 郝晓辰, 姚宁, 汝小月, 刘伟静, 辛敏洁. 基于生命期模型的无线传感器网络信道分配博弈算法. 物理学报, 2015, 64(14): 140101. doi: 10.7498/aps.64.140101
    [12] 刘浩然, 尹文晓, 董明如, 刘彬. 一种强容侵能力的无线传感器网络无标度拓扑模型研究. 物理学报, 2014, 63(9): 090503. doi: 10.7498/aps.63.090503
    [13] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究. 物理学报, 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [14] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [15] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [16] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究. 物理学报, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [17] 李永放, 张向阳, 孙建锋, 王永昌. 四能级系统中ac-Stark分裂研究. 物理学报, 2002, 51(4): 782-788. doi: 10.7498/aps.51.782
    [18] 邢爱堂, 黄湘友, 董太乾. 单模量子场作用下二能级原子能级的AC Stark移动. 物理学报, 2000, 49(11): 2146-2150. doi: 10.7498/aps.49.2146
    [19] 方达渭, 戴长建, 郦菁, 王云仙, 储晓峰, 徐云飞, 张森. Yb原子|m|=0,1里德伯态能级Stark结构. 物理学报, 1995, 44(3): 365-374. doi: 10.7498/aps.44.365
    [20] 丁广良, 刘炳模, 王嘉珉, 龚顺生. Cs原子里德伯态Stark能级场电离阈值与|ml|关系的测定. 物理学报, 1994, 43(11): 1754-1758. doi: 10.7498/aps.43.1754
计量
  • 文章访问数:  2573
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-02-29
  • 上网日期:  2024-03-08
  • 刊出日期:  2024-05-05

/

返回文章
返回