搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透明可开关的超宽带频率选择表面电磁屏蔽研究

王成蓉 唐莉 周艳萍 赵翔 刘长军 闫丽萍

引用本文:
Citation:

透明可开关的超宽带频率选择表面电磁屏蔽研究

王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍

Switchable and optically transparent ultrawide stopband frequency selective surface for electromagnetic shielding

Wang Cheng-Rong, Tang Li, Zhou Yan-Ping, Zhao Xiang, Liu Chang-Jun, Yan Li-Ping
PDF
HTML
导出引用
  • 高频电磁波主要通过玻璃门窗进入建筑物内部, 设计具有光学透明且屏蔽功能可开关的超宽带电磁屏蔽体, 对同时需要电磁安全和采光的特定场所具有重要工程应用价值. 本文利用液态金属的流动性, 提出了一种透明可开关电磁屏蔽体的设计新思路. 利用液态金属流动性作为电磁屏蔽的切换开关, 利用其导电性及Ω型频率选择表面(FSS)结构设计实现超宽带电磁屏蔽. 该FSS结构由三层透明材料构成, 中间层为聚甲基丙烯酸甲酯(PMMA), 顶层和底层为聚二甲基硅氧烷(PDMS), 且其中嵌有正交排列的Ω型微通道. 通过对微通道中注入液态金属, 可将该FSS结构的频率响应从全通状态切换到带阻状态. 双层Ω型微通道设计可增强液态金属的流动性并减半其用量, 同时实现18.1 GHz以下(覆盖P, L, S, C, X和Ku波段)超宽带电磁干扰抑制, 且具有高达80°的极化角度稳定性. 所设计的FSS电磁屏蔽结构单元81%的面积未覆盖金属, 可获得良好的光学透明性. 通过仿真计算TE和TM两种极化方式下的反射系数和吸收率, 深入分析了所设计结构的超宽阻带和高角度稳定性机理. 对所设计结构进行制备和实验测试, 测试结果与仿真结果基本吻合, 验证了所设计FSS结构的超宽带电磁屏蔽性能.
    In view of the fact that high-frequency electromagnetic waves mainly enter buildings through windows and glass doors, switchable optically-transparent shielding with broad stopband is increasingly needed. Herein, a novel design for a switchable and optically transparent frequency selective surface (FSS) with ultrawide-stopband is presented in this study. The structure consists of a polymethyl methacrylate (PMMA) layer sandwiched between polydimethylsiloxane (PDMS) layers which contain liquid metal microchannels arranged in an orthogonal Ω-shaped configuration. The mobility of the liquid metal can switch the FSS response from an all-pass to an ultrawide bandstop behavior. The proposed FSS achieves a rejection bandwidth of 18.1 GHz, covering P, L, S, C, X and Ku bands, while maintaining a transparency of 81% and high angular stability up to 80°, regardless of polarization. Furthermore, the mechanism behind the ultrawide stopband and high angular stability is explored through an analysis of reflection and absorption for both TE polarization and TM polarization. Experimental validation under both normal and oblique incidence demonstrates the ultrawide-stopband performance of the fabricated FSS.
      通信作者: 周艳萍, ypzhou11@scu.edu.cn ; 闫丽萍, liping_yan@scu.edu.cn
    • 基金项目: 国家自然科学基金区域创新发展联合基金(批准号: U22A2015)、四川省科技厅国际合作项目(批准号: 2024YFHZ0282)和四川大学宜宾校市合作项目(批准号: 2020CDYB-31)资助的课题.
      Corresponding author: Zhou Yan-Ping, ypzhou11@scu.edu.cn ; Yan Li-Ping, liping_yan@scu.edu.cn
    • Funds: Project supported by the Regional Innovation and Development Joint Funds of the National Natural Science Foundation of China (Grant No. U22A2015), the International Cooperation Project of the Science and Technology Department of Sichuan Province, China (Grant No. 2024YFHZ0282), and the Sichuan University Yibin School-City Cooperation Program, China (Grant No. 2020CDYB-31).
    [1]

    Munk B A, 2000 Frequency Selective Surfaces: Theory and Design (New York, USA: Wiley) p63

    [2]

    王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍 2024 物理学报 73 024201Google Scholar

    Wang D J, Sun Z H, Zhang Y, Tang L, Yan L P 2024 Acta Phys. Sin. 73 024201Google Scholar

    [3]

    赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar

    Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar

    [4]

    Liao W J, Zhang W Y, Hou Y C, Chen S T, Kuo C Y, Chou M 2019 IEEE Antennas Wirel. Propag. Lett. 18 2076Google Scholar

    [5]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar

    [6]

    Chiu C N, Chang Y C, Hsieh H C, Chen C H 2010 IEEE Trans. Electromagn. Compat. 52 56Google Scholar

    [7]

    Li D, Li T W, Li E P, Zhang Y J 2018 IEEE Trans. Electromagn. Compat. 60 768Google Scholar

    [8]

    Nauman M, Saleem R, Rashid A K, Shafique M F 2016 IEEE Trans. Electromagn. Compat. 58 419Google Scholar

    [9]

    Yin W Y, Zhang H, Zhong T, Min X L 2018 IEEE Trans. Electromagn. Compat. 60 2057Google Scholar

    [10]

    Chaluvadi M, Kanth V K, Thomas K G 2020 IEEE Trans. Electromagn. Compat. 62 1068Google Scholar

    [11]

    Yong W Y, Rahim S K A, Himdi M, Seman F C, Suong D L, Ramli M R, Elmobarak H A 2018 IEEE Access 6 11657Google Scholar

    [12]

    Chaudhary V, Panwar R 2021 IEEE Trans. Magn. 57 2800710Google Scholar

    [13]

    Abirami B S, Sundarsingh E F, Ramalingam V S 2020 IEEE Trans. Electromagn. Compat. 62 2643Google Scholar

    [14]

    Sanjeev Y, Prakash J C , Mohan S M 2019 IEEE Trans. Electromagn. Compat. 61 887Google Scholar

    [15]

    Yang Y, Li W, Salama K N, Shamim A 2021 IEEE Trans. Antennas Propag. 69 2779Google Scholar

    [16]

    Lei Q Y, Luo Z L, Zheng X Y, Lu N, Zhang Y M, Huang J F, Yang L, Gao S M, Liang Y Y, He S L 2023 Opt. Mater. Express 13 469Google Scholar

    [17]

    Guo Q X, Peng Q Y, Qu M J, Su J X, Li Z R 2022 Opt. Express 30 7793Google Scholar

    [18]

    Zhang Y Q, Dong H X, Mou N L, Chen L L, Li R H, Zhang L 2020 Opt. Express 28 26836Google Scholar

    [19]

    Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar

    [20]

    Dewani A A, O’Keefe S G, Thiel D V, Galehdar A 2018 IEEE Trans. Antennas Propag. 66 790Google Scholar

    [21]

    Habib S, Kiani G I, Butt M F U 2019 IEEE Access 7 65075Google Scholar

    [22]

    Xu S J, Li Y, Ahmed M, Fang L D, Jin N, Li B H, Huo S Y, Lei X Y, Sun Z, Yu H Y, Li E P 2021 IEEE Access 9 161854Google Scholar

    [23]

    Syed I S, Ranga Y, Matekovits L, Esselle K P, Hay S 2014 IEEE Trans. Electromagn. Compat. 56 1404Google Scholar

    [24]

    Katoch K, Jaglan N, Gupta S D 2021 IEEE Trans. Electromagn. Compat. 63 1423Google Scholar

    [25]

    Li P, Liu W, Ren Z, Meng W, Song L 2022 IEEE Access 10 9446Google Scholar

    [26]

    周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山 2020 物理学报 69 204101Google Scholar

    Zhou S H, Fang X Y, Li M M, Yu Y F, Chen R S 2020 Acta Phys. Sin. 69 204101Google Scholar

    [27]

    Lei B J, Zamora A, Chun T F, Ohta A T, Shiroma W A. 2011 IEEE Microw. Wirel. Compon. Lett. 21 465Google Scholar

    [28]

    Ghosh S, Srivastava K V 2018 IEEE Trans. Electromagn. Compat. 60 166Google Scholar

    [29]

    Saikia M, Srivastava K V, Ramakrishna S A 2020 IEEE Trans. Antennas Propag. 68 2937Google Scholar

    [30]

    Sivasamy R, Moorthy B, Kanagasabai M, Samsingh V R, Alsath M G N 2018 IEEE Trans. Electromagn. Compat. 60 280Google Scholar

    [31]

    韩鹏, 王军, 王甲富, 等 2016 物理学报 65 197701Google Scholar

    Han P, Wang J, Wang J F, et al. 2016 Acta Phys. Sin. 65 197701Google Scholar

    [32]

    Ghosh S, Lim S 2018 IEEE Trans. Antennas Propag. 66 4953Google Scholar

    [33]

    Wang C R, Yan L P, Sun Z H, Yang Y, Zhao X 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, September 1–4, 2022 p669

    [34]

    Sheikh S 2016 IEEE Antennas Wirel. Propag. Lett. 15 1661Google Scholar

    [35]

    Ghosh S, Lim S 2018 IEEE Trans. Microw. Theory Tech. 66 3857Google Scholar

    [36]

    Yan L P, Xu L L, Gao R X K, Zhang J H, Yang X P, Zhao X 2022 IEEE Trans. Electromagn. Compat. 64 251Google Scholar

  • 图 1  所设计FSS的结构图 (a)单元透视图; (b)单层PDMS内的液态金属流动示意图; (c) FSS单元结构的演变过程

    Fig. 1.  Geometry of the proposed FSS structure: (a) Perspective view of the unit cell; (b) schematic of liquid metal flow in a single layer of PDMS; (c) evolution of the proposed FSS structure.

    图 2  FSS的传输系数随 (a)距离s和(b)液态金属厚度h的变化

    Fig. 2.  Transmission coefficient of the proposed FSS in terms of (a) distance s and (b) the liquid metal thickness h.

    图 3  不同场景下的传输系数

    Fig. 3.  Transmission coefficient for different scenarios.

    图 4  TE和TM极化条件下传输系数随入射角的变化 (a) TE极化; (b) TM 极化

    Fig. 4.  Simulated |S21| with respect to incident angles for (a) TE and (b) TM polarizations.

    图 5  (a)单层网格结构与文中FSS结构的ECM分析; (b)文中FSS的ECM; (c) ECM与全波分析传输系数比较

    Fig. 5.  (a) Equivalent circuit model (ECM) analysis of the single layer grid structure and the proposed three-layer FSS structure; (b) summarized ECM of the proposed FSS; (c) comparison of transmission coefficient between ECM and full-wave analysis.

    图 6  不同入射波角度下FSS的反射系数和吸收率 (a) TE极化; (b) TM极化

    Fig. 6.  Reflection coefficients and absorptivity of the proposed FSS with respect to incident angles for TE (a) and TM (b) polarizations.

    图 7  三种不同频率下的功率损耗密度 (a), (b) 80°斜入射; (c) 60°斜入射

    Fig. 7.  Power loss density of the proposed FSS at the specific frequencies for TE and TM polarizations at oblique incidence of 80°(a) and (b), and 60° (c).

    图 8  制造过程概览 (a) 金属模具; (b) PDMS混合物; (c)将溶液倒入模具; (d) 脱模; (e) 向微通道注入液态金属(EGaIn); (f) 透过FSS结构看到的美丽风景

    Fig. 8.  Overview of the fabrication process: (a) Metal mold; (b) the PDMS mixture; (c) pull the solution into the mold; (d) demold; (e) inject liquid metal (EGaIn) into the microchannel; (f) beautiful scenery seen through the proposed FSS.

    图 9  实验测试系统 (a)示意图 (b) 实验测试装置图

    Fig. 9.  Measurement setup: (a) Sketch; (b) photograph through the proposed FSS.

    图 10  垂直入射时, (a) TE和 (b) TM极化下|S21|值测量结果与仿真结果的对比

    Fig. 10.  Comparison between simulated and measured |S21| of the proposed FSS at normal incidence for (a) TE and (b) TM polarizations.

    图 11  不同入射角度下, (a) TE和(b) TM极化下|S21|值测量结果与仿真结果对比

    Fig. 11.  Comparison between simulated and measured |S21| of the proposed FSS at different incident angles for (a) TE and (b) TM polarizations.

    表 1  FSS单元结构所含材料的电磁特性参数

    Table 1.  Electromagnetic characteristics of the materials contained in the FSS unit.

    电磁特性参数 材料名
    相对介电常数 PDMS 3 – j0.195
    PMMA 2.55 – j0.0051
    EGaIn 1
    相对磁导率 PDMS 1
    PMMA 1
    EGaIn 1
    电导率/(S·m–1) EGaIn 3.4 × 106
    下载: 导出CSV

    表 2  FSS单元结构参数

    Table 2.  Value of parameters in the unit cell.

    参量 d s w h hPDMS hPMMA p
    值/mm 4 2 0.5 2 2.7 1.5 10
    下载: 导出CSV

    表 3  TE极化参数值

    Table 3.  Parameters value for TE polarization.

    入射角
    /(°)
    频率/GHz S11/dB S21/dB Zin Z0
    Re Im
    80 10.5 –15.51 –18.23 2848.8 –565.8 2171.1
    80 11.7 –20.79 –18.95 1844.8 –119.0 2171.1
    60 12 –14.9 –17.01 765.1 –290.3 754
    下载: 导出CSV

    表 4  与文献中相关工作的 FSS结构性能对比

    Table 4.  Performance comparison of our design with what of reported FSSs.

    文献 透明度/% 可开关或可调谐性能 10 dB 屏蔽带宽/GHz 角度稳定性/(°)
    [21] N N 3.0—12.0 60
    [22] N N 7.34—15.0 45
    [15] 81.6 N 0.71—1.25
    1.73—2.16
    60
    [16] 84.5 N 8.0—12.0 NM
    [27] N 汞和油的体积调谐 4.08—16.96 NM
    [28] N 变容二极管调谐 0.54—2.5 60
    [25] N EGaIn注入不同层调谐 <4.5 (底层结构)
    < 12.2 (顶层结构)
    NM
    [32] N EGaIn注入控制全通到带阻 1.9—3.1 (TM 极化)
    3.2—4.2 (TE极化)
    45
    60
    本文设计 81 EGaIn注入控制全通到阻带 < 18.1 80
    注: N表示不支持该功能; NM表示未提及
    下载: 导出CSV
  • [1]

    Munk B A, 2000 Frequency Selective Surfaces: Theory and Design (New York, USA: Wiley) p63

    [2]

    王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍 2024 物理学报 73 024201Google Scholar

    Wang D J, Sun Z H, Zhang Y, Tang L, Yan L P 2024 Acta Phys. Sin. 73 024201Google Scholar

    [3]

    赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar

    Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar

    [4]

    Liao W J, Zhang W Y, Hou Y C, Chen S T, Kuo C Y, Chou M 2019 IEEE Antennas Wirel. Propag. Lett. 18 2076Google Scholar

    [5]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar

    [6]

    Chiu C N, Chang Y C, Hsieh H C, Chen C H 2010 IEEE Trans. Electromagn. Compat. 52 56Google Scholar

    [7]

    Li D, Li T W, Li E P, Zhang Y J 2018 IEEE Trans. Electromagn. Compat. 60 768Google Scholar

    [8]

    Nauman M, Saleem R, Rashid A K, Shafique M F 2016 IEEE Trans. Electromagn. Compat. 58 419Google Scholar

    [9]

    Yin W Y, Zhang H, Zhong T, Min X L 2018 IEEE Trans. Electromagn. Compat. 60 2057Google Scholar

    [10]

    Chaluvadi M, Kanth V K, Thomas K G 2020 IEEE Trans. Electromagn. Compat. 62 1068Google Scholar

    [11]

    Yong W Y, Rahim S K A, Himdi M, Seman F C, Suong D L, Ramli M R, Elmobarak H A 2018 IEEE Access 6 11657Google Scholar

    [12]

    Chaudhary V, Panwar R 2021 IEEE Trans. Magn. 57 2800710Google Scholar

    [13]

    Abirami B S, Sundarsingh E F, Ramalingam V S 2020 IEEE Trans. Electromagn. Compat. 62 2643Google Scholar

    [14]

    Sanjeev Y, Prakash J C , Mohan S M 2019 IEEE Trans. Electromagn. Compat. 61 887Google Scholar

    [15]

    Yang Y, Li W, Salama K N, Shamim A 2021 IEEE Trans. Antennas Propag. 69 2779Google Scholar

    [16]

    Lei Q Y, Luo Z L, Zheng X Y, Lu N, Zhang Y M, Huang J F, Yang L, Gao S M, Liang Y Y, He S L 2023 Opt. Mater. Express 13 469Google Scholar

    [17]

    Guo Q X, Peng Q Y, Qu M J, Su J X, Li Z R 2022 Opt. Express 30 7793Google Scholar

    [18]

    Zhang Y Q, Dong H X, Mou N L, Chen L L, Li R H, Zhang L 2020 Opt. Express 28 26836Google Scholar

    [19]

    Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar

    [20]

    Dewani A A, O’Keefe S G, Thiel D V, Galehdar A 2018 IEEE Trans. Antennas Propag. 66 790Google Scholar

    [21]

    Habib S, Kiani G I, Butt M F U 2019 IEEE Access 7 65075Google Scholar

    [22]

    Xu S J, Li Y, Ahmed M, Fang L D, Jin N, Li B H, Huo S Y, Lei X Y, Sun Z, Yu H Y, Li E P 2021 IEEE Access 9 161854Google Scholar

    [23]

    Syed I S, Ranga Y, Matekovits L, Esselle K P, Hay S 2014 IEEE Trans. Electromagn. Compat. 56 1404Google Scholar

    [24]

    Katoch K, Jaglan N, Gupta S D 2021 IEEE Trans. Electromagn. Compat. 63 1423Google Scholar

    [25]

    Li P, Liu W, Ren Z, Meng W, Song L 2022 IEEE Access 10 9446Google Scholar

    [26]

    周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山 2020 物理学报 69 204101Google Scholar

    Zhou S H, Fang X Y, Li M M, Yu Y F, Chen R S 2020 Acta Phys. Sin. 69 204101Google Scholar

    [27]

    Lei B J, Zamora A, Chun T F, Ohta A T, Shiroma W A. 2011 IEEE Microw. Wirel. Compon. Lett. 21 465Google Scholar

    [28]

    Ghosh S, Srivastava K V 2018 IEEE Trans. Electromagn. Compat. 60 166Google Scholar

    [29]

    Saikia M, Srivastava K V, Ramakrishna S A 2020 IEEE Trans. Antennas Propag. 68 2937Google Scholar

    [30]

    Sivasamy R, Moorthy B, Kanagasabai M, Samsingh V R, Alsath M G N 2018 IEEE Trans. Electromagn. Compat. 60 280Google Scholar

    [31]

    韩鹏, 王军, 王甲富, 等 2016 物理学报 65 197701Google Scholar

    Han P, Wang J, Wang J F, et al. 2016 Acta Phys. Sin. 65 197701Google Scholar

    [32]

    Ghosh S, Lim S 2018 IEEE Trans. Antennas Propag. 66 4953Google Scholar

    [33]

    Wang C R, Yan L P, Sun Z H, Yang Y, Zhao X 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, September 1–4, 2022 p669

    [34]

    Sheikh S 2016 IEEE Antennas Wirel. Propag. Lett. 15 1661Google Scholar

    [35]

    Ghosh S, Lim S 2018 IEEE Trans. Microw. Theory Tech. 66 3857Google Scholar

    [36]

    Yan L P, Xu L L, Gao R X K, Zhang J H, Yang X P, Zhao X 2022 IEEE Trans. Electromagn. Compat. 64 251Google Scholar

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, 2024, 73(8): 086401. doi: 10.7498/aps.73.20232002
    [2] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240464
    [3] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜. 物理学报, 2022, 71(13): 134202. doi: 10.7498/aps.71.20212010
    [4] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究. 物理学报, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [5] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [6] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [7] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [8] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [9] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性. 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [10] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [11] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [12] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [13] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [14] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [15] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型. 物理学报, 2012, 61(18): 186106. doi: 10.7498/aps.61.186106
    [16] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [17] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [18] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [19] 张明晓, 田学雷, 郭风祥. 电磁感应式液固态金属电阻率定性测量装置及应用. 物理学报, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [20] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
计量
  • 文章访问数:  585
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-04-12
  • 上网日期:  2024-05-08
  • 刊出日期:  2024-06-20

/

返回文章
返回