搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深振荡磁控溅射放电等离子体脉冲特性

高剑英 李玉阁 雷明凯

引用本文:
Citation:

深振荡磁控溅射放电等离子体脉冲特性

高剑英, 李玉阁, 雷明凯

Plasma characteristics in deep oscillation magnetron sputtering of chromium target

Gao Jian-Ying, Li Yu-Ge, Lei Ming-Kai
PDF
HTML
导出引用
  • 深振荡脉冲磁控溅射(deep oscillation magnetron sputtering, DOMS)以一系列微脉冲振荡波形的形式向靶提供能量, 提供高密度等离子体的同时能够实现完全消除电弧放电和提高靶材原子离化率, 实现高质量薄膜的沉积制备. 针对DOMS微脉冲放电形式拓宽放电参数空间, 提高工艺灵活性的特点, 建立脉冲等离子体整体模型, 测量充电电压DCint = 300—380 V和微脉冲开启时间τon = 2—6 μs的Cr靶放电电压电流, 将电压电流波形作为模型输入条件, 获得DOMS放电等离子体参数随时间变化规律. 充电电压300 V, 等离子体峰值密度由τon = 2 μs的1.34×1018 m–3增至τon = 3 μs的2.64×1018 m–3, τon由3 μs增至6 μs时, 等离子体峰值密度基本不变. 靶材离化率随τon变化趋呈现相近趋势, 由τon = 2 μs的12%增至τon = 3 μs的20%, τon进一步增至6 μs, 离化率基本保持不变. 固定τon = 6 μs, DCint由300 V升高至380 V, 等离子体峰值密度由2.67×1018 m–3增至3.90×1018 m–3, 金属离化率由21%增至28%. DOMS放电具有高功率脉冲磁控溅射典型的金属自溅射现象, 峰值自溅射参数Πpeak随功率密度线性增大, 表明峰值功率密度是调控DOMS放电中金属自溅射的主要参数. Πpeak最高达到0.20, 金属自溅射程度远高于常规脉冲直流磁控溅射, 等离子体密度和沉积通量中金属离化率提高, 原子沉积带来的阴影效应减轻, 是DOMS沉积薄膜质量提高的原因.
    A global model for deep oscillation magnetron sputtering (DOMS) discharge is established to investigate the plasma characteristics in the ionization region. Target voltage and current waveforms with micropulse on-time τon of 2–6 μs and charging voltage of 300–380 V are acquired and used as an input of the proposed model. The effects of micropulse on-time and charging voltage on the plasma are investigated. At τon = 2 μs, the DOMS plasma density oscillates with the discharge current waveform. The plasma is mainly composed of Ar+ ions though the ionization fraction of Ar is only 2%. The proportion of Cr+ ions is lower but has a relatively high ionization fraction of 12%, and Cr2+ ions are negligible. The peak plasma density increases from 1.34×1018 m–3 at τon = 2 μs to 2.64×1018 m–3 at τon = 3 μs and the metal ionization fraction increases to 20%. Further increasing the on-time leads the peak density and ionization fraction to slightly change. When the charging voltage increases from 300 V to 380 V at τon = 6 μs, the peak plasma density increases linearly from 2.67×1018 m–3 to 3.90×1018 m–3, and the metal ionization fraction increases from 21% to 28%. The gas rarefaction occurs in the ionization region for DOMS discharge. The gas density oscillates in the initial stage of macropulse, and 5–6 micropulses later it reaches dynamic equilibrium. The Ar density dynamics shows that the Ar consumption is mainly caused by electron impact ionization, followed by electron impact excitation, and the consumption rate caused by sputter wind is about 10% of the electron impact ionization. The typical metal self-sputtering phenomenon of high power impulse magnetron sputtering (HiPIMS) also appears in the DOMS discharge. The peak value of self-sputtering parameter increases linearly with the peak power density rising. This suggests that the peak power density is one of the important parameters to manipulate the metal self-sputtering process in the DOMS discharge. The peak value of self-sputtering parameter reaches up to 0.20, indicating that a certain degree of metal self-sputtering occurs. The plasma density and the ionization fraction of the depositing flux are improved, which relieves the shadowing effect during conventional magnetron sputtering as a result of low ionization degree of sputtered metal.
      通信作者: 雷明凯, mklei@dlut.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2018YFA0704603)资助的课题.
      Corresponding author: Lei Ming-Kai, mklei@dlut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2018YFA0704603).
    [1]

    Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [2]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [3]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [4]

    Greczynski G, Petrov I, Greene J E, Hultman L 2019 J. Vac. Sci. Technol. A 37 60801Google Scholar

    [5]

    Christie D J, Tomasel F, Sproul W D, Carter D C 2004 J. Vac. Sci. Technol. A 22 1415Google Scholar

    [6]

    Hajihoseini H, Čada M, Hubička Z, Ünaldi S, Raadu M A, Brenning N, Gudmundsson J T, Lundin D 2019 Plasma 2 201Google Scholar

    [7]

    Lin J L, Wang B, Sproul W D, Ou Y X, Dahan I 2013 J. Phys. D: Appl. Phys. 46 84008Google Scholar

    [8]

    王浩琦, 欧伊翔, 华青松, 邱马顺, 帅麒麟, 付薇 2022 北京师范大学学报(自然科学版) 58 775Google Scholar

    Wang H Q, Ou Y X, Hua Q S, Qiu M S, Shuai Q L, Fu W 2022 J. Beijing Normal Univ. (Nat. Sci.) 58 775Google Scholar

    [9]

    Sanekata M, Nakagomi Y, Hirayama M, Nishida H, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Koyasu K, Misaizu F 2022 J. Appl. Phys. 131 243301Google Scholar

    [10]

    Yokoyama E, Sanekata M, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Misaizu F 2023 Jpn. J. Appl. Phys. 62 L1008Google Scholar

    [11]

    欧伊翔, 王浩琦, 庞盼, 罗军, 陈琳, 廖斌, 雷明凯, 欧阳晓平 2020 稀有金属材料与工程 49 2476

    Ou Y X, Wang H Q, Pang P, Luo J, Chen L, Liao B, Lei M K, Ouyang X P 2020 Rare Metal Mat. Eng. 49 2476

    [12]

    Oliveira J C, Fe Rnandes F, Fe Rreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140Google Scholar

    [13]

    Ferreira F, Cavaleiro A, Oliveira J 2021 J. Mater. Eng. Perform. 30 3912Google Scholar

    [14]

    Belosludtsev A, Vlček J, Houška J, Haviar S, Čerstvý R 2020 Surf. Coat. Technol. 392 125716Google Scholar

    [15]

    Gao J Y, Ferreira F, Lei M K 2024 J. Appl. Phys. 135 33301Google Scholar

    [16]

    Gudmundsson J T, Fischer J, Hinriksson B P, Rudolph M, Lundin D 2022 Surf. Coat. Technol. 442 128189Google Scholar

    [17]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

    [18]

    Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001Google Scholar

    [19]

    Vlček J, Kudláček P, Burcalová K, Musil J 2007 Europhys. Lett. 77 45002Google Scholar

    [20]

    Huo C, Raadu M A, Lundin D, Gudmundsson J T, Anders A, Brenning N 2012 Plasma Sources Sci. Technol. 21 45004Google Scholar

    [21]

    Anders A, Čapek J, Hála M, Martinu L 2012 J. Phys. D: Appl. Phys. 45 12003Google Scholar

    [22]

    Oliveira J C, Ferreira F, Anders A, Cavaleiro A 2018 Appl. Surf. Sci. 433 934Google Scholar

  • 图 1  充电电压300 V、微脉冲开启时间2 μs时, DOMS靶电压和电流波形

    Fig. 1.  Typical target voltage and current waveforms of a DOMS discharge with τon = 2 μs and DCint = 300 V.

    图 2  τon = 2 μs实验采集和模拟计算得到的DOMS放电靶电流

    Fig. 2.  Experimental and calculated current waveforms at τon = 2 μs.

    图 3  DOMS等离子体带电粒子密度随时间变化 (a) τon = 2 μs; (b) τon = 6 μs

    Fig. 3.  Temporal evolution of charged particle densities in DOMS plasmas: (a) τon = 2 μs; (b) τon = 6 μs.

    图 4  DOMS等离子体带电粒子密度随时间变化 (a) DCint = 340 V; (b) DCint = 380 V

    Fig. 4.  Temporal evolution of charged particle densities in DOMS plasmas: (a) DCint = 340 V; (b) DCint = 380 V.

    图 5  主要带电粒子峰值密度随不同参数变化 (a)微脉冲开启时间; (b)充电电压

    Fig. 5.  Peak densities of charged particle densities as functions of the different parameters: (a) Micropulse on-time; (b) charging voltage.

    图 6  Cr和Ar峰值离化率随不同参数变化 (a) 微脉冲开启时间; (b)充电电压

    Fig. 6.  Peak ionization degrees of Cr and Ar as functions of: (a) Micropulse on-time; (b) charging voltage.

    图 7  离化区工作气体归一化密度随时间变化 (a) τon为2 μs和6 μs; (b) DCint为340 V和380 V

    Fig. 7.  Temporal evolution of normalized density of working gas in the ionization region: (a) τon = 2 and 6 μs; (b) DCint = 340 and 380 V.

    图 8  充电电压300 V, Ar原子反应动力学 (a) τon = 2 μs; (b) τon = 6 μs

    Fig. 8.  Dynamics of Ar atoms at DCint = 300 V: (a) τon = 2 μs; (b) τon = 6 μs.

    图 9  金属自溅射参数随时间变化 (a) τon为2和6 μs; (b) DCint为340和380 V

    Fig. 9.  Temporal evolution of metal self-sputtering parameter: (a) τon = 2 and 6 μs; (b) DCint = 340 and 380 V.

    图 10  峰值金属自溅射参数随不同参数变化 (a)微脉冲开启时间; (b)充电电压; (c)峰值功率密度

    Fig. 10.  Peak self-sputtering parameter as function of different parameters: (a) Micropulse on-time; (b) charging voltage; (c) peak power density.

    表 1  不同微脉冲开启时间DOMS放电参数

    Table 1.  Discharge parameters of DOMS using different micropulse on-time.

    充电
    电压/V
    微脉冲开启
    时间τon/μs
    峰值
    电压/V
    峰值
    电流/A
    峰值
    功率/kW
    3002635.827.514.4
    3003729.050.629.8
    3004714.449.429.2
    3005726.051.531.0
    3006731.651.530.8
    3406810.663.842.2
    3806870.773.548.7
    下载: 导出CSV

    表 2  DOMS溅射Cr靶主要等离子体反应

    Table 2.  Reactions considered in DOMS plasma using a Cr target.

    反应 阈值/eV 速率系数/(m3·s–1)
    e + Ar → Ar+ + 2e 15.76 $2.3\times 10^{-14}T_{\rm e}^{0.59} \exp(-17.44/T_{\rm e}) $
    e + Ar → Arm + e 11.56 $2.5\times 10^{-15}T_{\rm e}^{0.74}\exp(- 11.56/T_{\rm e}) $
    e + Arm → Ar+ + 2e 4.20 $6.8\times 10^{-15}T_{\rm e}^{0.67} \exp(-4.2/T_{\rm e}) $
    e + Cr → Cr+ + 2e 6.76 $4.12\times 10^{-13}T_{\rm e}^{ -0.151}\exp(- 10.71/T_{\rm e})$
    e + Cr+ → Cr2+ + 2e 16.49 $5.27\times 10^{-14}T_{\rm e}^{ 0.087}\exp(- 22.05/T_{\rm e})$
    Ar+ + Cr → Ar + Cr+ $1\times10^{-15} $
    Arm + Cr → Ar + Cr+ + e $3.3\times10^{-16} $
    下载: 导出CSV
  • [1]

    Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [2]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [3]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [4]

    Greczynski G, Petrov I, Greene J E, Hultman L 2019 J. Vac. Sci. Technol. A 37 60801Google Scholar

    [5]

    Christie D J, Tomasel F, Sproul W D, Carter D C 2004 J. Vac. Sci. Technol. A 22 1415Google Scholar

    [6]

    Hajihoseini H, Čada M, Hubička Z, Ünaldi S, Raadu M A, Brenning N, Gudmundsson J T, Lundin D 2019 Plasma 2 201Google Scholar

    [7]

    Lin J L, Wang B, Sproul W D, Ou Y X, Dahan I 2013 J. Phys. D: Appl. Phys. 46 84008Google Scholar

    [8]

    王浩琦, 欧伊翔, 华青松, 邱马顺, 帅麒麟, 付薇 2022 北京师范大学学报(自然科学版) 58 775Google Scholar

    Wang H Q, Ou Y X, Hua Q S, Qiu M S, Shuai Q L, Fu W 2022 J. Beijing Normal Univ. (Nat. Sci.) 58 775Google Scholar

    [9]

    Sanekata M, Nakagomi Y, Hirayama M, Nishida H, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Koyasu K, Misaizu F 2022 J. Appl. Phys. 131 243301Google Scholar

    [10]

    Yokoyama E, Sanekata M, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Misaizu F 2023 Jpn. J. Appl. Phys. 62 L1008Google Scholar

    [11]

    欧伊翔, 王浩琦, 庞盼, 罗军, 陈琳, 廖斌, 雷明凯, 欧阳晓平 2020 稀有金属材料与工程 49 2476

    Ou Y X, Wang H Q, Pang P, Luo J, Chen L, Liao B, Lei M K, Ouyang X P 2020 Rare Metal Mat. Eng. 49 2476

    [12]

    Oliveira J C, Fe Rnandes F, Fe Rreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140Google Scholar

    [13]

    Ferreira F, Cavaleiro A, Oliveira J 2021 J. Mater. Eng. Perform. 30 3912Google Scholar

    [14]

    Belosludtsev A, Vlček J, Houška J, Haviar S, Čerstvý R 2020 Surf. Coat. Technol. 392 125716Google Scholar

    [15]

    Gao J Y, Ferreira F, Lei M K 2024 J. Appl. Phys. 135 33301Google Scholar

    [16]

    Gudmundsson J T, Fischer J, Hinriksson B P, Rudolph M, Lundin D 2022 Surf. Coat. Technol. 442 128189Google Scholar

    [17]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

    [18]

    Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001Google Scholar

    [19]

    Vlček J, Kudláček P, Burcalová K, Musil J 2007 Europhys. Lett. 77 45002Google Scholar

    [20]

    Huo C, Raadu M A, Lundin D, Gudmundsson J T, Anders A, Brenning N 2012 Plasma Sources Sci. Technol. 21 45004Google Scholar

    [21]

    Anders A, Čapek J, Hála M, Martinu L 2012 J. Phys. D: Appl. Phys. 45 12003Google Scholar

    [22]

    Oliveira J C, Ferreira F, Anders A, Cavaleiro A 2018 Appl. Surf. Sci. 433 934Google Scholar

  • [1] 倪唯荣, 黄海龙, 卢肖勇, 王晓冬. 离子溅射对合金靶材寿命的影响. 物理学报, 2025, 74(1): 010201. doi: 10.7498/aps.74.20240711
    [2] 田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威. 单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计. 物理学报, 2024, 73(17): 178801. doi: 10.7498/aps.73.20240732
    [3] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [4] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性. 物理学报, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [5] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量. 物理学报, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [6] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [7] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [8] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [9] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [10] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [11] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [12] 沈自才, 邵建达, 王英剑, 范正修. 磁控反应溅射法制备渐变折射率薄膜的模型分析. 物理学报, 2005, 54(10): 4842-4845. doi: 10.7498/aps.54.4842
    [13] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [14] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [15] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜. 物理学报, 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
    [16] 赖建军, 余建华, 黄建军, 王新兵, 丘军林. 空心阴极直流放电的二维自洽模型描述和阴极溅射分析. 物理学报, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
    [17] 汪建华, 袁润章, 邬钦崇, 任兆杏. 用微波ECR等离子体溅射法在蓝宝石(0112)晶面上生长ZnO薄膜的研究. 物理学报, 1999, 48(5): 955-960. doi: 10.7498/aps.48.955
    [18] 应用于金属蒸气激光器的磁约束溅射放电理论模型. 物理学报, 1997, 46(8): 1479-1486. doi: 10.7498/aps.46.1479
    [19] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅱ)——数值计算与结果讨论. 物理学报, 1996, 45(2): 345-352. doi: 10.7498/aps.45.345
    [20] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅰ)——模型建立. 物理学报, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
计量
  • 文章访问数:  2117
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-06-27
  • 上网日期:  2024-07-13
  • 刊出日期:  2024-08-20

/

返回文章
返回