搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究

许鑫萌 娄钦

引用本文:
Citation:

剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究

许鑫萌, 娄钦

Lattice Boltzmann method for studying dynamics of single rising bubble in shear-thickening power-law fluids

Xu Xin-Meng, Lou Qin
PDF
HTML
导出引用
  • 采用不可压非牛顿气液两相流格子Boltzmann方法研究了剪切增稠流体中气泡上升的动力学行为, 重点分析了流变指数n、Eöυös数(Eo)和Galilei数(Ga)对气泡形变、终端速度和剪切速率的影响. 数值结果表明: 气泡形变程度随Eo的增大而增大, n对气泡形状的影响与Ga相关. 另一方面, 随着Ga增大, 气泡终端速度随n呈非线性单调增大, 且n对终端速度的影响随Ga的增大逐渐明显; 当Ga固定且值较小时, 气泡终端速度在较小Eo下随n的增大先增大后减小, 而当Eo较大时终端速度随n的增大呈增大趋势; 当Ga固定且较大时, 气泡终端速度在Eo较大时较为统一地随n增大而增大. 此外, 气泡左右两端存在剪切速率较高的区域, 该区域尺寸随Eo, Ga的增大而增大, 随n的增大先增大后缩小. 最后利用正交试验法得到上述三变量对剪切速率和终端速度的影响程度. 对于剪切速率, 参数影响程度由大到小的顺序依次为n, GaEo; 对于终端速度, Ga对其影响最大, n次之, Eo影响程度最小.
    Bubble motion in non-Newtonian fluids is widely present in various industrial processes such as crude oil extraction, enhancement of boiling heat transfer, CO2 sequestration and wastewater treatment. System containing non-Newtonian liquid, as opposed to Newtonian liquid, has shear-dependent viscosity, which can change the hydrodynamic characteristics of the bubbles, such as their size, deformation, instability, terminal velocity, and shear rate, and ultimately affect the bubble rising behaviors. In this work, the dynamic behavior of bubble rising in a shear-thickened fluid is studied by using an incompressible lattice Boltzmann non-Newtonian gas-liquid two-phase flow model. The effects of the rheological exponent n, the Eötvös number (Eo), and the Galilei number (Ga) on the bubble deformation, terminal velocity, and the shear rate are investigated. The numerical results show that the degree of bubble deformation increases as Eo grows, and the effect of n on bubble deformation degree relates to Ga. On the other hand, the terminal velocity of the bubbles increases monotonically and nonlinearly with Ga for given Eo and n, and the effect of n on the terminal velocity of the bubbles turns stronger as Ga increases. When Ga is fixed and small, the terminal velocity of the bubble increases and then decreases with the increase of n at small Eo, and increases with the increase of n when Eo is large; but when Ga is fixed and large, the terminal velocity of the bubbles increases with the increase of n in a more uniform manner. In addition, regions with high shear rates can be found near the left end and right end of the bubble. The size of these regions grows with Eo and Ga, exhibiting an initial increase followed by a decrease as n increases. Finally, the orthogonal experimental method is used to obtain the influences of the aforementioned three factors on the shear rate and terminal velocity. The order of influence on shear rate is n, Ga and Eo which are arranged in descending order. For the terminal velocity, Ga has the greatest influence, followed by n, and Eo has the least influence.
      通信作者: 娄钦, qlou@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52376068, 51976128)和上海浦江人才 (批准号: 22PJD047) 资助的课题.
      Corresponding author: Lou Qin, qlou@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52376068, 51976128) and the Pujiang Program of Shanghai, China (Grant No. 22PJD047).
    [1]

    Wang C, Lu, Y L, Ye T X, Chen L, He L M 2023 Process Saf. Environ. 180 554Google Scholar

    [2]

    Li E, Zeng X 2021 Water Sci. Technol. 84 404Google Scholar

    [3]

    Xia Y C, Zhang R, Xing Y W, Gui X H 2019 Fuel. 235 687Google Scholar

    [4]

    Hu X D, Wang J F, Xie J, Wang B J, Wang F 2023 Processes 11 2357Google Scholar

    [5]

    Fei L L, Yang J P, Chen Y R, Mo H R, Luo K H 2020 Phys. Rev. Fluids 32 103312Google Scholar

    [6]

    Gollakota A R K, Reddy M, Subramanyam M D, Kishore N 2016 Renew. Sust. Energ. Rev. 58 1543Google Scholar

    [7]

    Chen X L, Wang M Q, Wang B, Hao H D, Shi H L, Wu Z A, Chen J X, Gai L M, Tao H C, Zhu B K, Wang B H 2023 Energies 16 1775Google Scholar

    [8]

    Amirnia S, Debruyn J R, Bergougnou M A, Margaritis A 2013 Chem. Eng. Sci. 94 60Google Scholar

    [9]

    Li S B, Ma Y G, Jiang S K, Fu T T, Zhu C Y, Li H Z 2012 J. Fluid. Eng. 134 084501Google Scholar

    [10]

    Zhang L, Yang C, Mao Z S 2010 J. Non-Newtonian Fluid Mech. 165 555Google Scholar

    [11]

    Premlata A R, Tripathi M K, Karri B, Sahu K C 2017 J. Non-Newtonian Fluid Mech. 239 53Google Scholar

    [12]

    Pang M J, Lu M J 2018 Vacuum 153 101Google Scholar

    [13]

    Pan K L, Chen Z J 2014 J. Comput. Appl. Math. 67 290Google Scholar

    [14]

    Tripathi M K, Sahu K C, Karapetsas G, Matar O K 2015 J. Non-Newtonian Fluid Mech. 222 217Google Scholar

    [15]

    Pillapakkam S B, Singh P, Blackmore D, Aubry N 2007 J. Fluid Mech. 589 215Google Scholar

    [16]

    Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiph. Flow 95 84Google Scholar

    [17]

    Battistella A, van Schijndel S J G, Roghair I 2020 J. Non-Newtonian Fluid Mech. 278 104249Google Scholar

    [18]

    Morris J F 2020 Annu. Rev. Fluid Mech 52 121Google Scholar

    [19]

    Wei M H, Lin K, Sun L 2022 Mater. Des. 216 110570Google Scholar

    [20]

    Ohta M, Kimura S, Furukawa T, Yoshida Y, Sussman M 2012 J. Chem. Eng. Jpn. 45 713Google Scholar

    [21]

    Ezzatneshan E, Khosroabadi A A 2022 J. Appl. Fluid Mech. 15 1771Google Scholar

    [22]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [23]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [24]

    Du Rui, Wang Y B 2021 Appl. Math. Lett. 114 106911Google Scholar

    [25]

    Chai Z H, Shi B C, Zhan C J 2022 Phys. Rev. E 106 055305Google Scholar

    [26]

    Wanga L, Hea K, Wang H L 2023 Phys. Rev. E 108 055306Google Scholar

    [27]

    Yu Y, Li Q, Qiu Y, Huang R Z 2021 Phys. Fluids 33 083306Google Scholar

    [28]

    Liang H, Li Y, Chen J X, Xu J R 2019 Int. J. Heat Mass Tran. 130 1189Google Scholar

    [29]

    Luo J W, Chen L, Ke H B, Zhang C D, Xia Y, Tao W Q 2023 Appl. Therm. Eng. 236 121732Google Scholar

    [30]

    娄钦, 黄一帆, 李凌 2019 物理学报 68 214702Google Scholar

    Lou Q, Huang Y F, Li L 2019 Acta Phys. Sin. 68 214702Google Scholar

    [31]

    Peng Y, Laura S 2006 Phys. Fluids 18 042101Google Scholar

    [32]

    Chai Z H, Zhao T S 2012 Phys. Rev. E 86 016705Google Scholar

  • 图 1  模拟问题示意图

    Fig. 1.  Schematic illustration of simulation problem.

    图 2  不同EoGa和流变指数n对气泡终端速度的影响 (a) Eo = 5; (b) Eo = 10; (c) Eo = 20; (d) Eo = 30

    Fig. 2.  Effects of Ga and power-law index n on bubble terminal velocity at different Eo numbers: (a) Eo = 5; (b) Eo = 10; (c) Eo = 20; (d) Eo = 30.

    图 3  Eo和流变指数n对气泡终端速度的影响 (a) Ga = 22; (b) Ga = 32; (c) Ga = 39; (d) Ga = 45

    Fig. 3.  Effects of Eo and power-law index n on bubble terminal velocity: (a) Ga = 22; (b) Ga = 32; (c) Ga = 39; (d) Ga = 45.

    图 4  剪切速率随Ga, Eon的变化趋势 (a) Ga = 22; (b) Eo = 5

    Fig. 4.  Effects of Ga, Eo and power-law index n on shear rate distribution: (a) Ga = 22; (b) Eo = 5.

    表 1  不同参数下得到的气泡终端形状 (a) Eo = 200; (b) Ga = 3.0

    Table 1.  Bubble terminal deformation at different values of Eo and Ga: (a) Eo = 200; (b) Ga = 3.0.

    Case A Eo = 200 Case B Ga = 3.0
    Ref. [12] 本文 Ref. [12] 本文
    Ga = 2.1Eo = 5
    Ga = 2.6Eo = 20
    Ga = 3.0Eo = 80
    下载: 导出CSV

    表 2  气泡形状图

    Table 2.  Bubble shape map.

    Ga = 22 Ga = 32
    n = 1.0 n = 1.2 n = 1.4 n = 1.6 n = 1.8 n = 1.0 n = 1.2 n = 1.4 n = 1.6 n = 1.8
    Eo = 5
    Eo = 10
    Eo = 20
    Eo = 30
    Ga = 39 Ga = 45
    n = 1.0 n = 1.2 n = 1.4 n = 1.6 n = 1.8 n = 1.0 n = 1.2 n = 1.4 n = 1.6 n = 1.8
    Eo = 5
    Eo = 10
    Eo = 20
    Eo = 30
    下载: 导出CSV

    表 3  气泡周围剪切速率分布

    Table 3.  Shear rate distribution around the bubble.

    Eo = 5 Eo = 30
    Ga = 22 Ga = 45 Ga = 22 Ga = 45
    n = 1
    n = 1.2
    n = 1.4
    n = 1.6
    n = 1.8
    下载: 导出CSV

    表 4  因素水平表

    Table 4.  Table of factor levels.

    水平因素
    nGaEo
    1.0225
    1.23210
    1.43920
    1.64530
    1.8
    下载: 导出CSV

    表 5  针对剪切速率的试验正交表

    Table 5.  Orthogonal table of tests for shear rate.

    试验次数 因 素 剪切速率
    (×10–6)
    n Ga Eo
    1 1.0 22 5 718
    2 1.0 32 20 1152
    3 1.0 39 30 1443
    4 1.0 45 10 1743
    5 1.0 45 30 1673
    6 1.2 22 30 798
    7 1.2 32 10 1325
    8 1.2 39 30 1659
    9 1.2 45 5 2078
    10 1.2 45 20 2035
    11 1.4 22 30 837
    12 1.4 32 5 1625
    13 1.4 39 20 1904
    14 1.4 45 30 2033
    15 1.4 45 10 1872
    16 1.6 22 20 1464
    17 1.6 32 30 1747
    18 1.6 39 10 2532
    19 1.6 45 30 2732
    20 1.6 45 5 3707
    21 1.8 22 10 3329
    22 1.8 32 30 2903
    23 1.8 39 5 6200
    24 1.8 45 20 4016
    25 1.8 45 30 3519
    下载: 导出CSV

    表 8  针对终端速度的数据分析

    Table 8.  Data analysis for terminal speed.

    试验均值/极差因 素
    nGaEo
    k11390.0540.01707.0
    k21608.81193.61623.6
    k31783.81792.81735.2
    k41851.42507.61737.9
    k51907.6
    R517.61967.6114.3
    下载: 导出CSV

    表 7  针对终端速度的试验正交表

    Table 7.  Orthogonal table of tests for terminal speed.

    试验次数因 素终端速度
    (×10–6)
    nGaEo
    11.0225479
    21.03220976
    31.039301487
    41.045102001
    51.045302007
    61.22230575
    71.232101163
    81.239301734
    91.24552250
    101.245202322
    111.42230614
    121.43251181
    131.439201889
    141.445302654
    151.445102581
    161.62220565
    171.632301322
    181.639101906
    191.645302787
    201.64552677
    211.82210467
    221.832301326
    231.83951948
    241.845202924
    251.845302873
    下载: 导出CSV

    表 6  针对剪切速率的数据分析

    Table 6.  Data analysis for shear rate.

    试验均值/极差因 素
    nGaEo
    k11345.81429.22865.6
    k21579.01750.42160.2
    k31654.22747.62114.2
    k42436.42540.81934.4
    k53993.4
    R2647.61318.4931.2
    下载: 导出CSV
  • [1]

    Wang C, Lu, Y L, Ye T X, Chen L, He L M 2023 Process Saf. Environ. 180 554Google Scholar

    [2]

    Li E, Zeng X 2021 Water Sci. Technol. 84 404Google Scholar

    [3]

    Xia Y C, Zhang R, Xing Y W, Gui X H 2019 Fuel. 235 687Google Scholar

    [4]

    Hu X D, Wang J F, Xie J, Wang B J, Wang F 2023 Processes 11 2357Google Scholar

    [5]

    Fei L L, Yang J P, Chen Y R, Mo H R, Luo K H 2020 Phys. Rev. Fluids 32 103312Google Scholar

    [6]

    Gollakota A R K, Reddy M, Subramanyam M D, Kishore N 2016 Renew. Sust. Energ. Rev. 58 1543Google Scholar

    [7]

    Chen X L, Wang M Q, Wang B, Hao H D, Shi H L, Wu Z A, Chen J X, Gai L M, Tao H C, Zhu B K, Wang B H 2023 Energies 16 1775Google Scholar

    [8]

    Amirnia S, Debruyn J R, Bergougnou M A, Margaritis A 2013 Chem. Eng. Sci. 94 60Google Scholar

    [9]

    Li S B, Ma Y G, Jiang S K, Fu T T, Zhu C Y, Li H Z 2012 J. Fluid. Eng. 134 084501Google Scholar

    [10]

    Zhang L, Yang C, Mao Z S 2010 J. Non-Newtonian Fluid Mech. 165 555Google Scholar

    [11]

    Premlata A R, Tripathi M K, Karri B, Sahu K C 2017 J. Non-Newtonian Fluid Mech. 239 53Google Scholar

    [12]

    Pang M J, Lu M J 2018 Vacuum 153 101Google Scholar

    [13]

    Pan K L, Chen Z J 2014 J. Comput. Appl. Math. 67 290Google Scholar

    [14]

    Tripathi M K, Sahu K C, Karapetsas G, Matar O K 2015 J. Non-Newtonian Fluid Mech. 222 217Google Scholar

    [15]

    Pillapakkam S B, Singh P, Blackmore D, Aubry N 2007 J. Fluid Mech. 589 215Google Scholar

    [16]

    Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiph. Flow 95 84Google Scholar

    [17]

    Battistella A, van Schijndel S J G, Roghair I 2020 J. Non-Newtonian Fluid Mech. 278 104249Google Scholar

    [18]

    Morris J F 2020 Annu. Rev. Fluid Mech 52 121Google Scholar

    [19]

    Wei M H, Lin K, Sun L 2022 Mater. Des. 216 110570Google Scholar

    [20]

    Ohta M, Kimura S, Furukawa T, Yoshida Y, Sussman M 2012 J. Chem. Eng. Jpn. 45 713Google Scholar

    [21]

    Ezzatneshan E, Khosroabadi A A 2022 J. Appl. Fluid Mech. 15 1771Google Scholar

    [22]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [23]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [24]

    Du Rui, Wang Y B 2021 Appl. Math. Lett. 114 106911Google Scholar

    [25]

    Chai Z H, Shi B C, Zhan C J 2022 Phys. Rev. E 106 055305Google Scholar

    [26]

    Wanga L, Hea K, Wang H L 2023 Phys. Rev. E 108 055306Google Scholar

    [27]

    Yu Y, Li Q, Qiu Y, Huang R Z 2021 Phys. Fluids 33 083306Google Scholar

    [28]

    Liang H, Li Y, Chen J X, Xu J R 2019 Int. J. Heat Mass Tran. 130 1189Google Scholar

    [29]

    Luo J W, Chen L, Ke H B, Zhang C D, Xia Y, Tao W Q 2023 Appl. Therm. Eng. 236 121732Google Scholar

    [30]

    娄钦, 黄一帆, 李凌 2019 物理学报 68 214702Google Scholar

    Lou Q, Huang Y F, Li L 2019 Acta Phys. Sin. 68 214702Google Scholar

    [31]

    Peng Y, Laura S 2006 Phys. Fluids 18 042101Google Scholar

    [32]

    Chai Z H, Zhao T S 2012 Phys. Rev. E 86 016705Google Scholar

  • [1] 申潇卓, 吴鹏飞, 林伟军. 脉动气泡在黏性介质中的声发射. 物理学报, 2024, 73(17): 174701. doi: 10.7498/aps.73.20240826
    [2] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [3] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [5] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟. 物理学报, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [6] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析. 物理学报, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [7] 张恒, 任峰, 胡海豹. 基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究. 物理学报, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [8] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [9] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [10] 苗博雅, 安宇. 两种气泡混合的声空化. 物理学报, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [11] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [15] 沈壮志, 吴胜举. 声场中气泡群的动力学特性. 物理学报, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [16] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [17] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [18] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [19] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  1660
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-04-26
  • 上网日期:  2024-05-16
  • 刊出日期:  2024-07-05

/

返回文章
返回