搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蝠鲼交错排布集群游动水动力性能

高鹏骋 田徐顺 黄桥高 潘光 褚勇

引用本文:
Citation:

蝠鲼交错排布集群游动水动力性能

高鹏骋, 田徐顺, 黄桥高, 潘光, 褚勇
cstr: 32037.14.aps.73.20240399

Hydrodynamic performance of manta rays swimming in staggered arranged group

Gao Peng-Cheng, Tian Xu-Shun, Huang Qiao-Gao, Pan Guang, Chu Yong
cstr: 32037.14.aps.73.20240399
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了探究蝠鲼“前上后下”交错排布集群游动时的水动力性能, 首先根据生物观测建立了蝠鲼形态学及运动学模型, 然后基于浸入边界法和球函数气体动理学格式(IB-SGKS)建立了鱼类集群游动数值计算方法. 系统研究了垂直间距固定为0.1倍体厚, 流向间距0—1.5倍体长(BL)下的双蝠鲼集群游动过程, 并结合全局三维涡结构和特征截面二维涡结构对集群系统以及集群中各单体的平均推力/效率进行分析. 数值结果表明: 当单体间流向间距较小时, 相比于单独游动, 推进性能急剧下降; 随着流向间距增加, 领航蝠鲼推进性能基本同单体游动保持一致; 但当Dx = 0.4BL时由于领航蝠鲼尾涡恰好越过跟随蝠鲼前缘直接作用在跟随蝠鲼初始脱落鳍尖涡处, 大幅提升其旋涡能量, 因此此时系统平均推力和效率提升均最大, 分别为29.69%和6.77%.
    To investigate the hydrodynamic performance of manta rays swimming in staggered arranged group, a morphological and kinematic model of manta rays is developed based on biological observations, and then a numerical calculation method is established for group swimming of manta rays based on the Immersed Boundary Method and the Sphere function-based Gas Kinetic Scheme (IB-SGKS). The group swimming of two manta rays with a fixed vertical spacing of 0.1 times the body thickness, and a flow direction spacing of 0—1.5 times the body length is systematically investigated. The average thrust/efficiency of the group system and each individual in the group are analyzed by combining the global three-dimensional (3D) vortex structure and the characteristic cross-section two-dimensional (2D) vortex structure. The numerical results are shown below. When the streamwise spacing between individuals is small, the propulsive performance decreases sharply compared with swimming alone; as the streamwise spacing increases, the propulsive performance of the leader manta ray is consistently better than that of swimming alone, with the maximum thrust enhanced up to 11.24% when Dx = 0.4BL, and the maximum efficiency is enhanced up to 3.58% when Dx = 0.3BL; with the increase of the streamwise spacing, in the thrust/efficiency curves of the follower manta ray appears volatility, with the maximum thrust enhanced to 48.14% when Dx = 0.4BL and the maximum efficiency reached to 12.39% when Dx = 0.5BL; the system average thrust and efficiency enhancement both reach their corresponding maximum values, specifically, 29.69% and 6.77%, when Dx = 0.4BL, which is because the tail vortex of the leading manta ray just passes through the front edge of the follower manta ray and directly acts on the tip vortex that initially falls off from the follower manta rays, thus substantially increasing their vortex energy.
      通信作者: 黄桥高, huangqiaogao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52201381, 52371338)和国家重点研发计划(批准号: 2022YFC2805200)资助的课题.
      Corresponding author: Huang Qiao-Gao, huangqiaogao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52201381, 52371338) and the National Key Research and Development Program of China (Grant No. 2022YFC2805200).
    [1]

    Walker J A, Westneat M W 1997 J. Exp. Biol. 200 1549Google Scholar

    [2]

    Borazjani I, Sotiropoulos F, Tytell E D, Lauder G V 2012 J. Exp. Biol. 215 671Google Scholar

    [3]

    Wöhl S, Schuster S 2007 J. Exp. Biol. 210 311Google Scholar

    [4]

    Li L, Ravi S, Xie G, Couzin I D 2021 Proc. R. Soc. A-Math. Phys. Eng. Sci. 477 20200810Google Scholar

    [5]

    Weihs D 1973 Nature 241 290Google Scholar

    [6]

    Chen S Y, Fei Y H J, Chen Y C, Chi K J, Yang J T 2016 Ocean Eng. 122 22Google Scholar

    [7]

    Wei C, Hu Q, Li S J, Shi X D 2023 Ocean Eng. 267 113258Google Scholar

    [8]

    Tian F B, Luo H, Zhu L, Liao J C, Lu X Y 2011 J. Comput. Phys. 230 7266Google Scholar

    [9]

    Tian F B, Wang W, Wu J, Sui Y 2016 Comput. Fluids 124 1Google Scholar

    [10]

    Li Y F, Chang J T, Kong C, Bao W 2022 Chin. J. Aeronaut. 35 14Google Scholar

    [11]

    王亮 2007 博士学位论文 (南京: 河海大学)

    Wang L 2007 Ph. D. Dissertation (Nanjing: Hehai University

    [12]

    Jian D, Shao X M 2006 J. Hydrodyn. 18 438Google Scholar

    [13]

    Chung M H 2011 J. Mech. 27 177Google Scholar

    [14]

    Dai L Z, He G W, Zhang X, Zhang X 2018 J. R. Soc. Interface 15 20180490Google Scholar

    [15]

    Chao L M, Zhang D, Cao Y H, Pan G 2018 Mod. Phys. Lett. B 32 1850034Google Scholar

    [16]

    Chao L M, Pan G, Zhang D, Yan G X 2019 Ocean Eng. 183 167Google Scholar

    [17]

    Li X H, Gu J Y, Su Z, Yao Z Q 2021 Phys. Fluids 33 121905Google Scholar

    [18]

    高鹏骋, 刘冠杉, 黄桥高, 潘光, 马云龙 2023 力学学报 55 62Google Scholar

    Gao P C, Liu G S, Huang Q G, Pan G, Ma Y L 2023 Chin. J. Theor. Appl. Mech. 55 62Google Scholar

    [19]

    高鹏骋, 黄桥高, 宋东, 潘光, 马云龙 2023 西北工业大学学报 41 595Google Scholar

    Gao P C, Huang Q G, Song D, Pan G, Ma Y L 2023 Journal of Northwestern Polytechnical University 41 595Google Scholar

    [20]

    Gao P C, Huang Q G, Pan G, Ma Y L, Song D 2022 Phys. Fluids 34 111908Google Scholar

    [21]

    Gao P C, Huang Q G, Pan G, Cao Y, Luo Y 2023 Ocean Eng. 278 114389Google Scholar

    [22]

    Gao P C, Huang Q G, Pan G, Song D, Cao Y 2023 Phys. Fluids 35 061909Google Scholar

    [23]

    张栋 2020 博士学位论文 (西安: 西北工业大学)

    Zhang D 2020 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [24]

    Zhang D, Huang Q G, Pan G, Yang L M, Huang W X 2022 J. Fluid Mech. 930 A28Google Scholar

    [25]

    Zhang D, Huang W X 2023 J. Fluid Mech. 963 A16Google Scholar

    [26]

    Taira K, Colonius T 2007 J. Comput. Phys. 225 2118Google Scholar

    [27]

    Yang L M, Shu C, Wu J 2015 J. Comput. Phys. 295 322Google Scholar

    [28]

    Yang L M, Shu C, Wang Y, Sun Y 2016 J. Comput. Phys. 319 129Google Scholar

    [29]

    Yang L M, Shu C, Yang W M, Wang Y, Wu J 2017 Phys. Fluids 29 083605Google Scholar

    [30]

    Zhang J D, Sung H J, Huang W X 2020 Phys. Fluids 32 111902Google Scholar

    [31]

    Han P, Pan Y, Liu G, Dong H B 2022 J. Fluids Struct. 108 103422Google Scholar

    [32]

    Gao P C, Tian X S, Huang Q G, Pan G 2024 Phys. Fluids 36 0180621Google Scholar

  • 图 1  真实蝠鲼集群游动

    Fig. 1.  Real manta rays group swimming.

    图 2  计算模型[18]

    Fig. 2.  Computational model[18].

    图 3  蝠鲼运动模型图

    Fig. 3.  Manta ray motion model view.

    图 4  交错队形示意图

    Fig. 4.  Staggered formation schematic.

    图 5  金枪鱼计算域设置及网格细节图

    Fig. 5.  Tuna computational domain setup and mesh details.

    图 6  流向力系数曲线

    Fig. 6.  Streamwise force coefficient curve.

    图 7  网格细节图

    Fig. 7.  Mesh detail view.

    图 8  不同网格下推力系数曲线

    Fig. 8.  Thrust coefficient curves for different meshes.

    图 9  不同时间步长下推力系数曲线

    Fig. 9.  Thrust coefficient curves for different time steps.

    图 10  不同流向间距下水动力性能表现 (a) 推力系数; (b) 推进效率

    Fig. 10.  Hydrodynamic performance at different streamwise spacings: (a) Thrust coefficient; (b) propulsion efficiency.

    图 11  蝠鲼单体游动状态流场结构及特征截面定义

    Fig. 11.  Wake structure and the definition of characteristic cross sections for the single swimming state of manta rays.

    图 12  蝠鲼交错排布集群游动时流场结构(Dx = 0.4BL)

    Fig. 12.  Wake structures of manta rays during swimming in staggered arranged group (Dx = 0.4BL).

    图 13  蝠鲼交错排布集群游动时流场结构(Dx = 0.8BL)

    Fig. 13.  Wake structures of manta rays during swimming in staggered arranged group (Dx = 0.8BL).

  • [1]

    Walker J A, Westneat M W 1997 J. Exp. Biol. 200 1549Google Scholar

    [2]

    Borazjani I, Sotiropoulos F, Tytell E D, Lauder G V 2012 J. Exp. Biol. 215 671Google Scholar

    [3]

    Wöhl S, Schuster S 2007 J. Exp. Biol. 210 311Google Scholar

    [4]

    Li L, Ravi S, Xie G, Couzin I D 2021 Proc. R. Soc. A-Math. Phys. Eng. Sci. 477 20200810Google Scholar

    [5]

    Weihs D 1973 Nature 241 290Google Scholar

    [6]

    Chen S Y, Fei Y H J, Chen Y C, Chi K J, Yang J T 2016 Ocean Eng. 122 22Google Scholar

    [7]

    Wei C, Hu Q, Li S J, Shi X D 2023 Ocean Eng. 267 113258Google Scholar

    [8]

    Tian F B, Luo H, Zhu L, Liao J C, Lu X Y 2011 J. Comput. Phys. 230 7266Google Scholar

    [9]

    Tian F B, Wang W, Wu J, Sui Y 2016 Comput. Fluids 124 1Google Scholar

    [10]

    Li Y F, Chang J T, Kong C, Bao W 2022 Chin. J. Aeronaut. 35 14Google Scholar

    [11]

    王亮 2007 博士学位论文 (南京: 河海大学)

    Wang L 2007 Ph. D. Dissertation (Nanjing: Hehai University

    [12]

    Jian D, Shao X M 2006 J. Hydrodyn. 18 438Google Scholar

    [13]

    Chung M H 2011 J. Mech. 27 177Google Scholar

    [14]

    Dai L Z, He G W, Zhang X, Zhang X 2018 J. R. Soc. Interface 15 20180490Google Scholar

    [15]

    Chao L M, Zhang D, Cao Y H, Pan G 2018 Mod. Phys. Lett. B 32 1850034Google Scholar

    [16]

    Chao L M, Pan G, Zhang D, Yan G X 2019 Ocean Eng. 183 167Google Scholar

    [17]

    Li X H, Gu J Y, Su Z, Yao Z Q 2021 Phys. Fluids 33 121905Google Scholar

    [18]

    高鹏骋, 刘冠杉, 黄桥高, 潘光, 马云龙 2023 力学学报 55 62Google Scholar

    Gao P C, Liu G S, Huang Q G, Pan G, Ma Y L 2023 Chin. J. Theor. Appl. Mech. 55 62Google Scholar

    [19]

    高鹏骋, 黄桥高, 宋东, 潘光, 马云龙 2023 西北工业大学学报 41 595Google Scholar

    Gao P C, Huang Q G, Song D, Pan G, Ma Y L 2023 Journal of Northwestern Polytechnical University 41 595Google Scholar

    [20]

    Gao P C, Huang Q G, Pan G, Ma Y L, Song D 2022 Phys. Fluids 34 111908Google Scholar

    [21]

    Gao P C, Huang Q G, Pan G, Cao Y, Luo Y 2023 Ocean Eng. 278 114389Google Scholar

    [22]

    Gao P C, Huang Q G, Pan G, Song D, Cao Y 2023 Phys. Fluids 35 061909Google Scholar

    [23]

    张栋 2020 博士学位论文 (西安: 西北工业大学)

    Zhang D 2020 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [24]

    Zhang D, Huang Q G, Pan G, Yang L M, Huang W X 2022 J. Fluid Mech. 930 A28Google Scholar

    [25]

    Zhang D, Huang W X 2023 J. Fluid Mech. 963 A16Google Scholar

    [26]

    Taira K, Colonius T 2007 J. Comput. Phys. 225 2118Google Scholar

    [27]

    Yang L M, Shu C, Wu J 2015 J. Comput. Phys. 295 322Google Scholar

    [28]

    Yang L M, Shu C, Wang Y, Sun Y 2016 J. Comput. Phys. 319 129Google Scholar

    [29]

    Yang L M, Shu C, Yang W M, Wang Y, Wu J 2017 Phys. Fluids 29 083605Google Scholar

    [30]

    Zhang J D, Sung H J, Huang W X 2020 Phys. Fluids 32 111902Google Scholar

    [31]

    Han P, Pan Y, Liu G, Dong H B 2022 J. Fluids Struct. 108 103422Google Scholar

    [32]

    Gao P C, Tian X S, Huang Q G, Pan G 2024 Phys. Fluids 36 0180621Google Scholar

计量
  • 文章访问数:  3155
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-04-28
  • 上网日期:  2024-05-17
  • 刊出日期:  2024-07-05

/

返回文章
返回