搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大束流阳极层离子源的阴极刻蚀现象及消除措施

汤诗奕 马梓淇 邹云霄 安小凯 杨东杰 刘亮亮 崔岁寒 吴忠振

引用本文:
Citation:

大束流阳极层离子源的阴极刻蚀现象及消除措施

汤诗奕, 马梓淇, 邹云霄, 安小凯, 杨东杰, 刘亮亮, 崔岁寒, 吴忠振
cstr: 32037.14.aps.73.20240494

Cathode etching phenomenon of high beam-anode ion source and its elimination measures

Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen
cstr: 32037.14.aps.73.20240494
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 阳极层离子源可输出高密度离子束流, 广泛用于等离子体清洗和辅助沉积, 但大束流下内部易发生放电击穿, 且大量离子轰击内外阴极导致明显刻蚀, 易造成样品污染. 本文提出阳极环绕磁屏蔽罩和内外阴极溅射屏蔽板的设计方案, 并仿真研究了其对离子源电磁场和等离子体放电输运的影响. 发现阳极环绕磁屏蔽罩可切断离子源内部阴阳极间的磁场回路, 消除打火条件. 内外阴极溅射屏蔽板选择溅射产额低且绝缘性能好的氧化铝, 既可阻挡离子溅射, 又能屏蔽阴极外表面电场, 使等离子体放电向阳极压缩, 在抑制阴极刻蚀行为的同时提升离子输出效率. 当距离阴极外表面9 mm时, 溅射屏蔽板的作用效果最优, 不仅能获得稳定放电和高效输出, 还可大幅削弱阴极刻蚀行为并减少污染. 实验结果显示: 改进离子源无内部打火, 输出高效且清洁, 相同电流下离子输出效率较原离子源实际提高36%; 玻璃基片在经过1 h清洗后, 表面成分几乎不变, 来自阴极溅射的Fe元素含量仅为0.03%, 比原离子源低2个数量级, 含量约为原离子源的0.6%, 实验结果验证了理论分析.
    High beam-anode layer ion source can produce high-density ions, and has been widely used in plasma cleaning and assisted deposition. However, when increasing the ion-beams, arcing always occurs inside the ion source and serious etching will take place on the cathode, which results in sample pollution especially in long-time cleaning. In this work, two structures are designed, which are magnetic shielding around the anode and sputtering shielding on the top of the inner cathode and outer cathode, respectively. Based on the particle-in-cell/Monte Carlo collision method and test particle Monte Carlo method, the influence of designed structure on the electromagnetic field and the plasma properties of the ion source are studied through self-established simulation technique. The results show that the magnetic shielding around the anode cuts off the magnetic induction line between the cathode and anode, eliminating the arcing condition in the ion source. The sputtering shielding for the cathode uses alumina ceramic because of its extremely low sputtering yield and high insulation performance. Therefore, the sputtering shields can not only resist the ion sputtering, but also shield the electric field on the outer surface of the cathode. As a result, the plasma discharge region is compressed towards the anode and away from the cathode simultaneously, which provides a stronger electric field force directing to the output region for Ar+ ions, and also results in a suppressed cathode etching behavior but an improved Ar+ ion output efficiency. The optimized calculation shows that the best distance from the sputtering shield to the cathode surface is 9 mm. The discharge experiments reveal that the modified ion source can eliminate the inside arcing and provide a clean and strong ion beam with a high efficiency. At the same discharge current, the output efficiency of the modified ion source is 36% higher than that of the original ion source. When used in the plasma cleaning, the glass substrate remains transparent and keeps the original element composition ratio unchanged. The detected Fe content, coming from the cathode sputtering, is only 0.03% after the one-hour plasma cleaning, which is 2 orders of magnitude smaller than that cleaned by the original ion source. The Fe content of the modified ion source is about 0.6% of the original ion source, which is in good agreement with the result of simulation optimization.
      通信作者: 崔岁寒, cuish@pku.edu.cn ; 吴忠振, wuzz@pku.edu.cn
    • 基金项目: 深圳市科技计划深港联合资助项目(批准号: SGDX20201103095406024)、2022年深圳市高等院校稳定支持计划(批准号: 20220810143642004)、国家自然科学基金青年科学基金(批准号: 52305174)和深圳市博士后出站科研资助经费(批准号: 6700200201)资助的课题.
      Corresponding author: Cui Sui-Han, cuish@pku.edu.cn ; Wu Zhong-Zhen, wuzz@pku.edu.cn
    • Funds: Project supported by the Shenzhen Science and Technology Research Plan Shenzhen–Hong Kong Research and Development Fund (Grant No. SGDX20201103095406024), the Sustainable Supporting Funds for Colleges and Universities in 2022 (Grant No. 20220810143642004), the National Natural Science Foundation Youth Science Fund (Grant No. 52305174), and the Postdoctoral Research Fund Project after Outbound of Shenzhen, China (Grant No. 6700200201).
    [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737Google Scholar

    [2]

    赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5Google Scholar

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5Google Scholar

    [3]

    Lackner J M, Waldhauser W, Schwarz M, Mahoney L, Major B, 2008 Vacuum. 83 302Google Scholar

    [4]

    Lee S, Kim D G 2015 Appl. Sci. Converg. Tec. 24 162Google Scholar

    [5]

    Dudnikov V 2012 Rev. Sci. Instrum. 83 02A713Google Scholar

    [6]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Ricky K Y Fu, Paul K Chu, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [7]

    郭杏元, 曹永盛, 马金鹏 2021 中国专利 CN112575306A

    Guo X Y, Cao Y S, Ma J P 2021 China Patent CN112575306A

    [8]

    汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54Google Scholar

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54Google Scholar

    [9]

    郑军, 周晖, 赵栋才 2019 中国专利 CN108914091B

    Zheng J, Zhou H, Zhao D C 2019 China Patent CN108914091B

    [10]

    王鸣, 陈刚 2020 中国专利 CN109536906A

    Wang M, Chen G 2020 China Patent CN109536906A

    [11]

    Brenning N, Gudmundsson J T, Raadu M A, Petty T J, Minea T, Lundin D 2017 Plasma Sources Sci. Technol. 26 125003Google Scholar

    [12]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 035201Google Scholar

    [13]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas 15 104501Google Scholar

    [14]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [15]

    李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 物理学报 70 045202Google Scholar

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z C, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar

    [16]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285Google Scholar

    [17]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K Chu, Wu Z Z 2022 J. Phys. D. Appl. Phys. 55 325203Google Scholar

    [18]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103 013309Google Scholar

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [20]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van A K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 42 194018Google Scholar

    [21]

    崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 物理学报 71 055203Google Scholar

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203Google Scholar

    [22]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen S, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [24]

    Park D H, Kim J H, Ermakov Y 2008 Rev. Sci. Instrum. 79 02B312Google Scholar

    [25]

    Gui B H, Yang L, Zhou H, Luo S L, Xu J, Ma Z J, Zhang Y S 2022 Vacuum 200 111065Google Scholar

    [26]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

  • 图 1  阳极层离子源阳极环绕磁屏蔽罩和内外阴极溅射屏蔽板的设置示意图

    Fig. 1.  Diagram of the anode layer ion source with the magnetic shields surrounding the anode and sputtering shields on the top of the inner and outer cathodes.

    图 2  无(a)和有(b)阳极环绕磁屏蔽罩的阳极层离子源的电磁场分布

    Fig. 2.  Electromagnetic field distribution of anode-layer ion source (a) without and (b) with magnetic shields surrounding the anode.

    图 3  无(a)和有(b)内外阴极溅射屏蔽板的阳极层离子源的电势与等离子体密度分布

    Fig. 3.  Distribution of potential and plasma density of anode-layer ion source (a) without and (b) with the sputtering shields on the top of the inner and outer cathodes.

    图 4  不同溅射屏蔽板与内外阴极间距的阳极层离子源的电势与等离子体密度分布 (a) d = 7 mm; (b) d = 9 mm; (c) d = 11 mm; (d) d = 13 mm

    Fig. 4.  Distribution of potential and plasma density of anode-layer ion source with different distance between the sputtering shield and the cathode: (a) d = 7 mm; (b) d = 9 mm; (c) d = 11 mm; (d) d = 13 mm.

    图 5  参与阴极溅射、溅射屏蔽板阻挡与输出Ar+离子比例(a)和能量(b)

    Fig. 5.  (a) Ratio and (b) energy of the Ar+ ions participate in the cathode sputtering, blocking by the sputtering shield and output.

    图 6  (a) Ar+离子对阴极材料(Fe)和屏蔽板材料(Al2O3)的溅射产额; (b) 相同条件下阴极和溅射屏蔽板刻蚀产生的Fe, Al和O原子含量(归一化)

    Fig. 6.  (a) Sputtering yield of Ar+ ion to the cathode material (Fe) and shield material (Al2O3); (b) the normalized atomic content of Fe, Al, and O generated by the cathode and sputtering shields under the same conditions

    图 7  归一化的Ar+离子输出效率和Fe原子沉积总量

    Fig. 7.  Normalized Ar+ ion output efficiency and Fe atom deposition quantity.

    图 8  改进阳极层离子源的(a)结构图、(b)实物图和(c)辉光图; 改进前后离子源在恒压放电条件的(d)放电电流和(e)基片电流密度; 改进前后离子源在恒流放电条件下的(f)基片电流密度

    Fig. 8.  (a) Structural diagram, (b) the physical picture and (c) the glow picture of the modified anode-layer ion source; (d) the discharge current and (e) the substrate current density of the original and the modified ion source under the constant discharge voltage; (f) the substrate current density of the original and the modified ion source under the constant discharge current.

    图 9  空白玻璃基片和经改进前后离子源清洗1 h的玻璃基片的(a)实物图和(b)透过率; (c)原离子源与(d) 改进离子源清洗的玻璃基片表面Fe元素分布的EDS检测结果

    Fig. 9.  (a) physical pictures and (b) transmission of blank glass substrates and glass substrates after cleaning by the original and modified ion sources for 1 h; EDS detection results of Fe element distribution on glass substrate surface after cleaning by (c) the original ion source and the (d) modified ion source.

    表 1  Ar气放电的主要反应表[16]

    Table 1.  Main reactions of Ar gas discharge[16].


    反应方程式 反应速率系数 kr/(m3⋅s–1) 反应能量
    阈值/eV
    反应类型
    1 e + Ar → Ar + e $ 2.336 \times {10^{ - 14}}{T_{\text{e}}}^{1.609} \exp [ {0.0618{{( {\ln {T_{\text{e}}}} )}^2} - 0.1171{{ ( {\ln {T_{\text{e}}}} )}^3}} ] $ 弹性碰撞
    2 e + Ar → Ar+ + 2e $ 2.34 \times {10^{ - 14}}{T_{\text{e}}}^{0.59} \exp \left( { - 17.44/{T_{\text{e}}}} \right) $ 15.76 电离碰撞
    3 e + Ar → Arm + e $ 2.5 \times {10^{ - 15}}{T_{\text{e}}}^{0.74} \exp \left( { - 11.56/{T_{\text{e}}}} \right) $ 11.56 激发碰撞
    4 e + Arm → Ar+ + 2e $ 6.8 \times {10^{ - 15}}{T_{\text{e}}}^{0.67} \exp \left( { - 4.2/{T_{\text{e}}}} \right) $ 4.2 激发态电离
    5 e + Arm → Ar + e $ 4.3 \times {10^{ - 16}}{T_{\text{e}}}^{0.74} $ –11.56 退激发碰撞
    6 Ar+ + Ar → Ar+ + Ar 硬球碰撞 弹性碰撞
    7 Ar+ + Ar → Ar + Ar+ 硬球碰撞 电荷交换
    下载: 导出CSV

    表 2  等离子体放电特征分析

    Table 2.  Analysis of plasma discharge properties.

    d/mm峰值密度/m–3峰值位置
    坐标/mm
    放电面
    积/mm2
    无溅射屏蔽板1.68×1016(31.5, 52.5)170.25
    76.79×1014(31.0, 50.5)10.25
    92.89×1015(32.0, 51.0)66.00
    118.27×1015(32.0, 52.0)115.00
    131.42×1016(31.5, 52.5)153.75
    下载: 导出CSV

    表 3  检验Fe原子MC模型仿真结果

    Table 3.  Simulation results of the Test Fe atom MC model.

    d/mm 输出的Fe
    原子比例/%
    溅射屏蔽板阻挡
    Fe原子比例/%
    返回阴极的Fe
    原子比例/%
    无溅射
    屏蔽板
    19.4 80.6
    7 0.3 21.1 78.6
    9 0.3 24.5 75.2
    11 0.3 25.8 73.9
    13 0.8 27.3 71.9
    下载: 导出CSV

    表 4  EDS检测结果

    Table 4.  EDS detection results.

    原子百
    分比/%
    空白玻璃
    基片
    原离子源清洗的
    玻璃基片
    改进离子源清洗的
    玻璃基片
    C12.6112.8310.93
    O55.2757.3356.73
    Na7.234.577.23
    Mg1.911.411.97
    Si20.5116.6920.90
    Ca2.462.102.22
    Fe05.080.03
    下载: 导出CSV
  • [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737Google Scholar

    [2]

    赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5Google Scholar

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5Google Scholar

    [3]

    Lackner J M, Waldhauser W, Schwarz M, Mahoney L, Major B, 2008 Vacuum. 83 302Google Scholar

    [4]

    Lee S, Kim D G 2015 Appl. Sci. Converg. Tec. 24 162Google Scholar

    [5]

    Dudnikov V 2012 Rev. Sci. Instrum. 83 02A713Google Scholar

    [6]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Ricky K Y Fu, Paul K Chu, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [7]

    郭杏元, 曹永盛, 马金鹏 2021 中国专利 CN112575306A

    Guo X Y, Cao Y S, Ma J P 2021 China Patent CN112575306A

    [8]

    汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54Google Scholar

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54Google Scholar

    [9]

    郑军, 周晖, 赵栋才 2019 中国专利 CN108914091B

    Zheng J, Zhou H, Zhao D C 2019 China Patent CN108914091B

    [10]

    王鸣, 陈刚 2020 中国专利 CN109536906A

    Wang M, Chen G 2020 China Patent CN109536906A

    [11]

    Brenning N, Gudmundsson J T, Raadu M A, Petty T J, Minea T, Lundin D 2017 Plasma Sources Sci. Technol. 26 125003Google Scholar

    [12]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 035201Google Scholar

    [13]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas 15 104501Google Scholar

    [14]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [15]

    李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 物理学报 70 045202Google Scholar

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z C, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar

    [16]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285Google Scholar

    [17]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K Chu, Wu Z Z 2022 J. Phys. D. Appl. Phys. 55 325203Google Scholar

    [18]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103 013309Google Scholar

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [20]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van A K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 42 194018Google Scholar

    [21]

    崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 物理学报 71 055203Google Scholar

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203Google Scholar

    [22]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen S, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [24]

    Park D H, Kim J H, Ermakov Y 2008 Rev. Sci. Instrum. 79 02B312Google Scholar

    [25]

    Gui B H, Yang L, Zhou H, Luo S L, Xu J, Ma Z J, Zhang Y S 2022 Vacuum 200 111065Google Scholar

    [26]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] 王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛. 单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能. 物理学报, 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [3] 许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云. 一种用于强流脉冲离子束的束流输出稳定性实时监测方法. 物理学报, 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [4] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真. 物理学报, 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [5] 谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强. 神光II升级激光装置基频输出能力提升. 物理学报, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [6] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜. 物理学报, 2022, 71(13): 134202. doi: 10.7498/aps.71.20212010
    [7] 赵杰, 唐德礼, 许丽, 李平川, 张帆, 李建, 桂兵仪. 阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响. 物理学报, 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [8] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [9] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [10] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [11] 高扬福, 宋亦旭, 孙晓民. 基于刻蚀速率匹配的离子刻蚀产额优化建模方法. 物理学报, 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [12] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [13] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [14] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [15] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [16] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [17] 廖庆亮, 张 跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张 篁. 碳纳米管阴极的强流脉冲发射性能研究. 物理学报, 2007, 56(9): 5335-5340. doi: 10.7498/aps.56.5335
    [18] 王 森, 俞国军, 巩金龙, 李勤涛, 朱德彰, 朱志远. 低能氩离子束对多孔铝阳极氧化膜表面的刻蚀效应研究. 物理学报, 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [19] 宁兆元, 程珊华. 非晶含氢碳膜的氧等离子体刻蚀性能研究. 物理学报, 1999, 48(10): 1950-1956. doi: 10.7498/aps.48.1950
    [20] 艾克聪, 周立伟, 西门纪业. 宽束和细束电磁复合聚焦球面阴极透镜的象差理论. 物理学报, 1986, 35(9): 1199-1209. doi: 10.7498/aps.35.1199
计量
  • 文章访问数:  1579
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-08-22
  • 上网日期:  2024-08-26
  • 刊出日期:  2024-09-20

/

返回文章
返回