搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子辐照对材料磁性的调控及其应用

郭玺 左亚路 崔宝山 申铁龙 盛彦斌 席力

引用本文:
Citation:

离子辐照对材料磁性的调控及其应用

郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力

Ion irradiation modulated magnetic properties of materials and its applications

Guo Xi, Zuo Ya-Lu, Cui Bao-Shan, Shen Tie-Long, Sheng Yan-Bin, Xi Li
PDF
HTML
导出引用
  • 离子辐照技术具有离子束能量密度高、实验条件可精确控制, 且不受化学剂量比影响的特点, 利用离子束辐照材料, 可实现定向掺杂, 或精确引入和调控现缺陷位和密度等优势, 因此在多个领域, 如材料改性、芯片制造、生物医学、能源及化工领域都得到了广泛应用. 尤其在磁性材料改性领域, 该技术能够通过细致控制离子束的能量、剂量和辐照方向, 实现对磁性材料的定制化性能优化. 为进一步提升磁性材料的性能并探索新的磁性器件, 本文深入地探讨了离子辐照如何精确调制各种磁相互作用, 并分析其对自旋霍尔效应和磁结构动力学的影响. 首先着重介绍了离子辐照在调控垂直磁各向异性、交换偏置及RKKY相互作用等磁性特征方面的最新研究成果. 这些调控手段对于理解和优化磁性材料的微观结构和性质至关重要. 接着, 本文详细地探讨了离子辐照在调控自旋轨道力矩器件中的重要作用. 这些应用展示了离子辐照技术在设计高性能磁性存储和处理器件方面的潜力. 最后, 还讨论了辐照离子种类、能量、剂量、辐照面积等参数对磁斯格明子成核位置、密度、尺寸、稳定性以及磁斯格明子霍尔效应的调控作用, 阐明了离子辐照改变磁斯格明子生成、湮灭、运动规律等方面的内在机理, 为制备基于磁斯格明子运动的低功耗存储器件提供新的途径. 此外, 本文还就离子辐照技术在未来多功能磁性传感器及信息存储磁介质制备方面的可能应用进行了前瞻性分析. 离子辐照技术为磁性材料的性能调控和应用扩展提供了新的可能性. 随着研究的深入, 这项技术有望在未来的材料科学、电子器件以及信息技术等多个领域发挥更大的作用.
    Ion irradiation, a technology in which ion beams are used to irradiate materials, has high manipulation precision, short processing time, and many applications in the fields of material modification, chip manufacturing, biomedicine, energy and chemicals. Especially in magnetic material modification, customized modifications of magnetic materials can be achieved by precisely controlling the energy, dose, and direction of the ion beam. To further enhance the performances of magnetic materials and explore new magnetic devices, this study focuses on how ion irradiation precisely modulates various magnetic interactions and the analysis of its influence on the spin Hall effect and magnetic structural dynamics. Firstly, the latest research achievements are emphasized of ion irradiation regulated magnetic characteristics such as perpendicular magnetic anisotropy, exchange bias, and RKKY interaction. These regulation methods are crucial for understanding and optimizing the microstructure and properties of magnetic materials. Secondly, the significant role played by ion irradiation in regulating spin-orbit torque devices is discussed in detail. These applications demonstrate the potential of ion irradiation technology in designing high-performance magnetic storage and processing devices. Finally, the future applications of ion irradiation technology in the preparation of multifunctional magnetic sensors and magnetic media for information storage are discussed, highlighting its great enormous innovation and application potential in the field of magnetic materials.
      通信作者: 席力, xili@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51671098)和甘肃省自然科学基金(批准号: 22JR5RA474)资助的课题.
      Corresponding author: Xi Li, xili@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51671098) and the Natural Science Foundation of Gansu Province of China (Grant No. 22JR5RA474).
    [1]

    Jiles D C 2003 Acta. Mater. 51 5907Google Scholar

    [2]

    Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [3]

    Merazzo K J, Lima A C, Rincón-Iglesias M, Fernandes L C, Pereira N, Lanceros-Mendez S, Martins P 2021 Mater. Horiz 82564Google Scholar

    [4]

    Prabow Y A , Imaduddi R I, Pambud W S, Firmansya R A, Fahruzi A 2021 Mater. Sci. Eng 1010 012028Google Scholar

    [5]

    Sbiaa R, Meng H, Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413Google Scholar

    [6]

    Gschneidner Jr K A, Pecharsky V K 1999 J. Appl. Phys. 85 5365Google Scholar

    [7]

    Coey J M D 2020 Engineering 6 119Google Scholar

    [8]

    Freitas R F, Wilcke W W 2008 Ibm. J. Res. Dev. 52 439Google Scholar

    [9]

    Siddiqa A, Hashem I A T, Yaqoob I, Marjani M, Shamshirband S, Gani A, Nasaruddin F 2016 J Netw. Comput. Appl. 71 151Google Scholar

    [10]

    Zhang Q, Cheng L, Boutaba R 2010 J. Internet Serv. Appl. 1 7Google Scholar

    [11]

    Maslovski S I, Ikonen P M, Kolmakov I, Tretyakov S, Kaunisto M 2005 Prog. Electromagnet. Res. (PIER) 54 61Google Scholar

    [12]

    Pospiskova K, Safarik I 2015 Mater. Lett. 142 184Google Scholar

    [13]

    Zhao Q, Xiong Z H, Qin Z Z, Chen L L, Wu N, Li X X 2016 J. Phys. Chem. Solids 91 1Google Scholar

    [14]

    Zou P, Yu W, Bain J A 2002 IEEE Trans. Magn. 38 3501Google Scholar

    [15]

    Luborsky F, Becker J, Mccary R 1975 IEEE Trans. Magn. 11 1644Google Scholar

    [16]

    Dhara S 2007 Crit. Rev. Solid State Mater 32 1Google Scholar

    [17]

    Chappert C, Bruno P 1988 J. Appl. Phys. 64 5736Google Scholar

    [18]

    Fassbender J, Ravelosona D, Samson Y 2004 J. Phys. D: Appl. Phys. 37 R179Google Scholar

    [19]

    Fassbender J, Mccord J 2008 J. Magn. Magn. Mater. 320 579Google Scholar

    [20]

    Shashank U, Medwal R, Nakamura Y, Mohan J R, Nongjai R, Kandasami A, Rawat R S, Asada H, Gupta S, Fukuma Y 2021 Appl. Phys. Lett. 118 252406Google Scholar

    [21]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar

    [22]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [23]

    Su W, Hu Z Q, Li Y J, Han Y L, Chen Y C, Wang C Y, Jiang Z D, He Z X, Wu J G, Zhou Z Y, Wang Z G, Liu M 2023 Adv. Funct. Mater. 33 2211752Google Scholar

    [24]

    Stanescu D, Ravelosona D, Mathet V, Chappert C, Samson Y, Beigné C, Vernier N, Ferré J, Gierak J, Bouhris E, Fullerton E E 2008 J. Appl. Phys. 103 07B529Google Scholar

    [25]

    Rettner C, Anders S, Baglin J, Thomson T, Terris B 2002 Appl. Phys. Lett. 80 279Google Scholar

    [26]

    Devolder T, Pizzini S, Vogel J, Bernas H, Chappert C, Mathet V, Borowski M 2001 Eur. Phys. J. B 22 193Google Scholar

    [27]

    Kaminsky W, Jones G, Patel N, Booij W, Blamire M, Gardiner S, Xu Y, Bland J A C 2001 Appl. Phys. Lett. 78 1589Google Scholar

    [28]

    Greene P K, Osten J, Lenz K, Fassbender J , Jenkins C, Arenholz E, Endo T, Iwata N, Liu K 2014 Appl. Phys. Lett. 105 072401Google Scholar

    [29]

    Mahendra A, Murmu P P, Acharya S K, Islam A, Fiedler H, Gupta P, Granville S, Kennedy J 2023 Appl. Phys. A 129 500Google Scholar

    [30]

    Weller D, Baglin J, Kellock A, Hannibal K, Toney M, Kusinski G, Lang S, Folks L, Best M, Terris B 2000 J. Appl. Phys. 87 5768Google Scholar

    [31]

    Brodyanski A, Blomeier S, Gnaser H, Bock W, Hillebrands B, Kopnarski M, Reuscher B 2011 Phys. Rev. B 84 214106Google Scholar

    [32]

    Barr C M, Chen E Y, Nathaniel J E, Lu P, Adams D P, Dingreville R E M, Boyce B L, Hattar K, Medlin D L 2022 Sci. Adv. 8 eabn0900Google Scholar

    [33]

    Fassbender J, Mücklich A, Potzger K, Möller W 2006 Nucl. Instrum. Methods Phys. Res. , Sect. B 248 343Google Scholar

    [34]

    Devolder T 2000 Phys. Rev. B 62 5794Google Scholar

    [35]

    Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A, Henschke A, Fassbender J 2009 Appl. Phys. Lett. 95 022502Google Scholar

    [36]

    Sveklo I, Mazalski P, Jaworowicz J, Jamet J P, Vernier N, Mougin A, Ferre J, Kisielewski M, Zablotskii V, Bourhis E, Gierak J, Postava K, Fassbender J, Kanak J, Maziewski A 2018 Acta Phys. Pol. A 133 1215Google Scholar

    [37]

    Maziewski A, Mazalski P, Kurant Z, Liedke M, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T, Rogalev A, Wilhelm F, Gemming T 2012 Phys. Rev. B 85 054427Google Scholar

    [38]

    Lai C H, Yang C H, Chiang C 2003 Appl. Phys. Lett. 83 4550Google Scholar

    [39]

    Ravelosona D, Chappert C, Mathet V, Bernas H 2000 Appl. Phys. Lett. 76 236Google Scholar

    [40]

    Aikoh K, Kosugi S, Matsui T, Iwase A 2011 J. Appl. Phys. 109 07E311Google Scholar

    [41]

    Bernas H, Attané J P, Heinig K H, Halley D, Ravelosona D, Marty A, Auric P, Chappert C, Samson Y 2003 Phys. Rev. Lett. 91 077203Google Scholar

    [42]

    Fassbender J, Liedke M, Strache T, Möller W, Menéndez E, Sort J, Rao K, Deevi S, Nogués J 2008 Phys. Rev. B 77 174430Google Scholar

    [43]

    Cantelli V, Von Borany J, Grenzer J, Fassbender J, Kaltofen R, Schumann J 2006 J. Appl. Phys. 99 08C102Google Scholar

    [44]

    Hellwig O, Weller D, Kellock A, Baglin J, Fullerton E E 2001 Appl. Phys. Lett. 79 1151Google Scholar

    [45]

    Devolder T, Barisic I, Eimer S, Garcia K, Adam J P, Ockert B, Ravelosona D 2013 J. Appl. Phys. 113 203912Google Scholar

    [46]

    Teixeira B, Timopheev A, Caçoilo N, Auffret S, Sousa R, Dieny B, Alves E, Sobolev N 2018 Appl. Phys. Lett. 112 202403Google Scholar

    [47]

    Chang G, Moewes A, Kim S, Lee J, Jeong K, Whang C, Kim D, Shin S C 2006 Appl. Phys. Lett. 88 092504Google Scholar

    [48]

    Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267Google Scholar

    [49]

    Li P Z, Van Der Jagt J W, Beens M, Hintermayr J, Verheijen M A, Bruikman R E, Barcones B, Juge R E O, Lavrijsen R, Ravelosona D E, Koopmans B 2022 Appl. Phys. Lett. 121 172404Google Scholar

    [50]

    Rettner C T, Anders S, Thomson T, Albrecht M, Ikeda Y, Best M E, Terris B D 2002 IEEE Trans. Magn. 38 1725Google Scholar

    [51]

    Chappert C, Bernas H, Ferré J, Kottler V, Jamet J P, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H 1998 Science 280 1919Google Scholar

    [52]

    Mccord J, Gemming T, Schultz L, Fassbender J U R, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502Google Scholar

    [53]

    Ehresmann A, Krug I, Kronenberger A, Ehlers A, Engel D 2004 J. Magn. Magn. Mater. 280 369Google Scholar

    [54]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [55]

    Mougin A, Poppe S, Fassbender J, Hillebrands B 2001 J. Appl. Phys. 89 6606Google Scholar

    [56]

    Mewes T, Lopusnik R, Fassbender J, Hillebrands B 2000 Appl. Phys. Lett. 76 1057Google Scholar

    [57]

    Fassbender J, Poppe S, Mewes T, Juraszek J, Hillebrands B 2003 Appl. Phys. A 77 51Google Scholar

    [58]

    Schafer D, Geshev J, Nicolodi S, Pereira L G, Schmidt J E, Grande P L 2008 Appl. Phys. Lett. 93 042501Google Scholar

    [59]

    Schafer D, Geshev J, Pereira L G, Geshev J 2011 J. Appl. Phys. 109 023905Google Scholar

    [60]

    Mougin A, Mewes T, Lopusnik R, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J, Hillebrands B 2000 IEEE Trans. Magn. 36 2647Google Scholar

    [61]

    Mougin A, Mewes T, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J, Hillebrands B 2001 Phys. Rev. B 63 060409Google Scholar

    [62]

    Shen J D, Yang W B, Kumar A, Zhao H H, Lai Y J, Feng L S, Xu Q Y, Zhang Y Q, Du J, Li Q 2018 J. Magn. Magn. Mater. 451 734Google Scholar

    [63]

    Blachowicz T, Tillmanns A, Fraune M, Ghadimi R, Beschoten B, Güntherodt G 2007 Phys. Rev. B 75 054425Google Scholar

    [64]

    Ehresmann A, Junk D, Engel D, Paetzold A, Röll K 2005 J. Phys. D: Appl. Phys. 38 801Google Scholar

    [65]

    Engel D, Krug I, Schmoranzer H, Ehresmann A, Paetzold A, Röll K, Ocker B, Maass W 2003 J. Appl. Phys. 94 5925Google Scholar

    [66]

    Black-Schaffer A M 2010 Phys. Rev. B 81 205416Google Scholar

    [67]

    Yun J J, Sheng Y B, Guo X, Zheng B W, Chen P, Cao Y, Yan Z, He X D, Jin P, Li J, Cui M H, Shen T L, Wang Z G, Yang D Z, Zuo Y L, Xi L 2021 Phys. Rev. B 104 134416Google Scholar

    [68]

    Blomeier S, Hillebrands B, Demidov V E, Demokritov S O, Reuscher B, Brodyanski A, Kopnarski M 2005 J. Appl. Phys. 98 093503Google Scholar

    [69]

    Wawro A, Kurant Z, Tekielak M, Jakubowski M, Pietruczik A, Böttger R, Maziewski A 2017 Appl. Phys. Lett. 110 252405Google Scholar

    [70]

    Koch L, Samad F, Lenz M, Hellwig O 2020 Phys. Rev. Appl. 13 024029Google Scholar

    [71]

    Samad F, Hlawacek G, Arekapudi S S P K, Xu X, Koch L, Lenz M, Hellwig O 2021 Appl. Phys. Lett. 119 022409Google Scholar

    [72]

    Wawro A, Kurant Z, Jakubowski M, Tekielak M, Pietruczik A, Böttger R, Maziewski A 2018 Phys. Rev. Appl. 9 014029Google Scholar

    [73]

    Quirós C, Peverini L, Zárate L, Alija A, Díaz J, Vélez M, Rodríguez-Rodríguez G, Fauth F, Ziegler E, Alameda J M 2009 J. Phys. Condens. Matter 21 224024Google Scholar

    [74]

    Höink V, Schmalhorst J, Reiss G, Weis T, Lengemann D, Engel D, Ehresmann A 2008 J. Appl. Phys. 103 123903Google Scholar

    [75]

    Cayssol F, Menendez J, Ravelosona D, Chappert C, Jamet J P, Ferre J, Bernas H 2005 Appl. Phys. Lett. 86 022503Google Scholar

    [76]

    Van Der Jagt J W, Jeudy V, Thiaville A, Sall M, Vernier N, Diez L H, Belmeguenai M, Roussigné Y, Chérif S M, Fattouhi M, Lopez-Diaz L, Lamperti A, Juge R, Ravelosona D 2022 Phys. Rev. Appl. 18 054072Google Scholar

    [77]

    Devolder T, Ferré J, Chappert C, Bernas H, Jamet J P, Mathet V 2001 Phys. Rev. B 64 064415Google Scholar

    [78]

    Balan C, Van Der Jagt J W, Fassatoui A, Peña Garcia J, Jeudy V, Thiaville A, Bonfim M, Vogel J, Ranno L, Ravelosona D, Pizzini S 2023 Small 19 2302039Google Scholar

    [79]

    Diez L H, Voto M, Casiraghi A, Belmeguenai M, Roussigné Y, Durin G, Lamperti A, Mantovan R, Sluka V, Jeudy V, Liu Y T, Stashkevich A, Chérif S M, Langer J, Ocker B, Lopez-Diaz L, Ravelosona D 2019 Phys. Rev. B 99 054431Google Scholar

    [80]

    Herrera Diez L, García-Sánchez F, Adam J P, Devolder T, Eimer S, El Hadri M, Lamperti A, Mantovan R, Ocker B, Ravelosona D 2015 Appl. Phys. Lett. 107 032401Google Scholar

    [81]

    Macneill D, Stiehl G, Guimaraes M, Buhrman R, Park J, Ralph D 2017 Nat. Phys. 13 300Google Scholar

    [82]

    Bai Q N, Zhai Y B, Yun J J, Zhang J R, Chang M X, Zuo Y L, Xi L 2021 Appl. Phys. Lett. 119 212404Google Scholar

    [83]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [84]

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J, Koopmans B 2016 Nat. Commun. 7 10854Google Scholar

    [85]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [86]

    Dong K F, Guo Z, Jiao Y Y, Li R F, Sun C, Tao Y, Zhang S, Hong J, You L 2023 Phys. Rev. Appl. 19 024034Google Scholar

    [87]

    Dunne P, Fowley C, Hlawacek G, Kurian J, Atcheson G, Colis S, Teichert N, Kundys B, Venkatesan M, Lindner J R, Deac A M, Hermans T M, Coey J M D, Doudin B 2020 Nano Lett. 20 7036Google Scholar

    [88]

    An S, Baek E, Kim J A, Lee K S, You C Y 2022 Sci. Rep. 12 3465Google Scholar

    [89]

    Yun J J, Zuo Y L, Mao J, Chang M X, Zhang S X, Liu J, Xi L 2019 Appl. Phys. Lett. 115 032404Google Scholar

    [90]

    He X D, Sheng Y B, Yun J J, Zhang J R, Xie H F, Ren Y, Cui B S, Zuo Y L, Xi L 2023 J. Magn. Magn. Mater. 582 170977Google Scholar

    [91]

    Lee T, Kim J, An S, Jeong S, Lee D, Jeong D, Lee N J, Lee K S, You C Y, Park B G, Kim K J, Kim S, Lee S 2023 Acta Mater. 246 118705Google Scholar

    [92]

    Zhao X X, Liu Y, Zhu D Q, Sall M, Zhang X Y, Ma H L, Langer J, Ocker B, Jaiswal S, Jakob G, Kläui M, Zhao W S, Ravelosona D 2020 Appl. Phys. Lett. 116 242401Google Scholar

    [93]

    Kurian J, Joseph A, Cherifi-Hertel S, Fowley C, Hlawacek G, Dunne P, Romeo M, Atcheson G E L, Coey J M D, Doudin B 2023 Appl. Phys. Lett. 122 032402Google Scholar

    [94]

    Giuliano D, Gnoli L, Ahrens V, Roch M R, Becherer M, Turvani G, Vacca M, Riente F 2023 ACS Appl. Electron. Mater. 5 985Google Scholar

    [95]

    Chen R Z, Li C, Li Y, Miles J J, Indiveri G, Furber S, Pavlidis V F, Moutafis C 2020 Phys. Rev. Appl. 14 014096Google Scholar

    [96]

    Joy A, Satheesh S, Anil Kumar P 2023 Appl. Phys. Lett. 123 212405Google Scholar

    [97]

    Peng L C, Zhang Y, He M, Ding B, Wang W H, Li J Q, Cai J W, Wang S G, Wu G H, Shen B G 2018 J. Phys. Condens. Matter 30 065803Google Scholar

    [98]

    Choi H, Tai Y Y, Zhu J X 2019 Phys. Rev. B 99 134437Google Scholar

    [99]

    Schrautzer H, Von Malottki S, Bessarab P F, Heinze S 2022 Phys. Rev. B 105 014414Google Scholar

    [100]

    Gerlinger K, Pfau B, Büttner F, Schneider M, Kern L M, Fuchs J, Engel D, Günther C M, Huang M, Lemesh I, Caretta L, Churikova A, Hessing P, Klose C, Strüber C, Von Korff Schmising C, Huang S, Wittmann A, Litzius K, Metternich D, Battistelli R, Bagschik K, Sadovnikov A, Beach G S D, Eisebitt S 2021 Appl. Phys. Lett. 118 192403Google Scholar

    [101]

    Kern L M, Pfau B, Deinhart V, Schneider M, Klose C, Gerlinger K, Wittrock S, Engel D, Will I, Günther C M, Liefferink R, Mentink J H, Wintz S, Weigand M, Huang M J, Battistelli R, Metternich D, Büttner F, Höflich K, Eisebitt S 2022 Nano Lett. 22 4028Google Scholar

    [102]

    Juge R E O, Bairagi K, Rana K G, Vogel J, Sall M, Mailly D, Pham V T, Zhang Q, Sisodia N, Foerster M, Aballe L, Belmeguenai M, Roussigné Y, Auffret S, Buda-Prejbeanu L D, Gaudin G, Ravelosona D, Boulle O 2021 Nano Lett. 21 2989Google Scholar

    [103]

    Zhao Y K, Wang J L, Xu L X, Yu P Y, Hou M X, Meng F, Xie S, Meng Y F, Zhu R G, Hou Z P, Yang M Y, Luo J, Wu J, Xu Y B, Gao X S, Feng C, Yu G H 2023 ACS Appl. Mater. Interfaces 15 15004Google Scholar

    [104]

    De Jong M C, Smit B H, Meijer M J, Lucassen J, Swagten H J, Koopmans B, Lavrijsen R 2023 Phys. Rev. B 107 094429Google Scholar

    [105]

    Ahrens V, Kiesselbach C, Gnoli L, Giuliano D, Mendisch S, Kiechle M, Riente F, Becherer M 2023 Adv. Mater. 35 2207321Google Scholar

    [106]

    Hu Y, Zhang S F, Zhu Y M, Song C K, Huang J F, Liu C, Meng X, Deng X, Zhu L, Guan C S, Yang H X, Si M S, Zhang J W, Peng Y 2022 ACS Appl. Mater. Interfaces 14 34011Google Scholar

    [107]

    Chen Z Z, He X Y, Cai X Y, Qiu Y, Zhu M M, Yu G L, Zhou H M 2023 Appl. Phys. Lett. 122 142401Google Scholar

    [108]

    Toscano D, Mendonça J P A, Miranda A L S, De Araujo C I L, Sato F, Coura P Z, Leonel S A 2020 J. Magn. Magn. Mater. 504 166655Google Scholar

    [109]

    Fallon K, Hughes S, Zeissler K, Legrand W, Ajejas F, Maccariello D, McFadzean S, Smith W, McGrouther D, Collin S, Reyren N, Cros V, Marrows C H, McVitie, S 2020 Small 16 1907450Google Scholar

    [110]

    Miki S, Hashimoto K, Cho J, Jung J, You C, Ishikawa R, Tamura E, Nomura H, Goto M, Suzuki Y 2023 Appl. Phys. Lett. 122 202401Google Scholar

    [111]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [112]

    Okubo T, Chung S, Kawamura H 2012 Phys. Rev. Lett. 108 017206Google Scholar

    [113]

    Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A E, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [114]

    Wang X S, Yuan H Y, Wang X R 2018 Commun. Phys. 1 31Google Scholar

    [115]

    Zhang S M, Petford-Long A, Phatak C 2016 Sci. Rep. 6 31248Google Scholar

  • 图 1  (a)—(f) 不同剂量的30 keV Ga+辐照Pt/Co/Pt结构后测得的磁滞回线, 以及剩磁与辐照剂量之间的依赖关系[36] (a) 未辐照; (b) 4×1014 ions/cm2; (c) 2.5×1015 ions/cm2; (d) 6.25×1015 ions/cm2; (e) 8.75×1015 ions/cm2; (f) 剩磁与辐照剂量之间的依赖关系

    Fig. 1.  Measured hysteresis loops of 30 keV Ga+ irradiated Pt/Co/Pt structures at different doses, and the dependence between remanence and irradiation dose[36]: (a) Non-irradiated (N.I.); (b) 4×1014 ions/cm2; (c) 2.5×1015 ions/cm2; (d) 6.25×1015 ions/cm2; (e) 8.75×1015 ions/cm2; (f) relationship between the normalized remnant magnetization and Ga+ ion fluence.

    图 2  离子辐照辅助制备具有单轴各向异性或易锥面的结构 (a), (b) 间隔层为W, Ta 的Pt/Co样品受到不同剂量离子辐照后共振场的面外角依赖关系[46]; (c)—(f) 通过控制外加磁场和Ar+辐照方向之间的夹角, 在Co/Pt结构中形成单轴各向异性的过程; ○代表未辐照, ■代表剂量1014 ions/cm2, ★代表1015 ions/cm2, ▲代表3×1015 ions/cm2, ●代表3×1016 ions/cm2; 左上图显示了场辅助离子辐照实验装置的示意图; 1代表未辐照区, 2代表辐照区[47]

    Fig. 2.  Ion irradiation-assisted preparation of structures with uniaxial anisotropy or easy cone anisotropy. (a), (b) Dependence of the out-of-plane angle of the resonance field of the Pt/Co samples with the spacer layer of W, Ta irradiated by different dose[46]; (c)–(f) the process of controlling the angle between the applied magnetic field and the direction of Ar+ irradiation to form a uniaxial anisotropy in a Co/Pt structure; ○ stands for unirradiated. ■ stands for a dose of 1014 ions/cm2, ★ stands for 1015 ions/cm2, ▲ stands for 3×1015 ions/ cm2, ● represents 3×1016 ions/cm2, the upper left panel shows a schematic diagram of the experimental setup for field-assisted ion irradiation; 1 represents the unirradiated area, 2 represents the irradiated area[47].

    图 3  离子辐照调控交换偏置场大小与方向 (a) 在不同剂量辐照后交换偏置场随时间变化的函数[64]; ■代表未辐照, ◆代表辐照剂量为1×1013 ions/cm2, ▲代表辐照剂量为1014 ions/cm2, ●代表辐照剂量为1015 ions/cm2 [64]; (b) 离子辐照改变自旋阀结构的钉扎方向[57]

    Fig. 3.  Ion irradiation modulates the exchange bias field size and orientation: (a) Variation in the exchange bias field with time after irradiation at different doses[64] ■ represents unirradiated, ◆ represents irradiated dose of 1013 ions/cm2, ▲ represents an irradiation dose of 1014 ions/cm2, ● represents an irradiation dose of 1015 ions/cm2 [64]; (b) ion irradiation changes the pinning direction of the spin valve structure[57].

    图 4  不同剂量3 MeV Fe+辐照人工反铁磁样品后的磁滞回线与磁畴形貌[67] (a) 0 ions/cm2; (b) 0.5×1013 ions/cm2; (c) 1.1×1014 ions/cm2; (d) 1.7×1014 ions/cm2

    Fig. 4.  Hysteresis loops and domain morphology of 3 MeV Fe+ irradiated artificial antiferromagnetic samples under different doses[67]: (a) 0 ions/cm2; (b) 0.5×1013 ions/cm2; (c) 1.1×1014 ions/cm2; (d) 1.7×1014 ions/cm2.

    图 5  (a)不同剂量He+辐照Ta/CoFeB/MgO结构后, DW速度与外加磁场的函数关系, 以及当外场为53—56 mT时, 不同辐照剂量下的畴壁运动速度大小[79]; (b) Ta/CoFeB界面宽度与辐照剂量之间的对应关系[79]

    Fig. 5.  (a) DW velocity as a function of applied magnetic field after irradiating the Ta/CoFeB/MgO structure with different doses of He+ and the magnitude of the domain wall motion velocity at different irradiation doses when the external field is 53–56 mT[79]; (b) the lower part shows the correspondence between the width of the Ta/CoFeB interface and the irradiation dose[79].

    图 6  离子辐照Pt/Co/W结构[87] (a) 灰色区域是霍尔十字的金属电极, 绿色条纹表示磁性多层膜, 红色针探头用于测量霍尔电压, 而蓝色探针用于施加电流; (b) 反常霍尔电阻随辐照剂量在0—70 ions/nm2之间的变化情况; (c) 局部辐照过程示意图, 由于上下Co/HM界面的混合, 局部各向异性减小; (d) 在图(a)中标记的选定剂量下的由面内场驱动磁矩翻转的反常霍尔回线; (e) 由图(d)得到的经辐照和未辐照样品的归一化磁化强度; (f) 各向异性场和饱和磁化强度随辐照剂量的变化曲线

    Fig. 6.  Ion irradiation of SOT device with Pt/Co/W structure[87]: (a) The grey area is the metal electrode of Hall Cross, the green stripe indicates the magnetic multilayer film, the red pin probe is used to measure the Hall voltage while the blue probe is used to apply the current; (b) variation of the anomalous Hall loops with the irradiation dose between 0–70 ions/nm2; (c) the local irradiation process schematic, with reduced local anisotropy due to mixing at the upper and lower Co/HM interfaces; (d) anomalous Hall loop driven by in-plane field at selected doses labelled in panel (a); (e) the normalized magnetization intensity of irradiated and unirradiated samples obtained from panel (d); (f) anisotropic field and MS versus the irradiation dose.

    图 7  通过He+辐照制备的具有各向异性梯度的器件及其零场翻转测试[91] (a) 经过离子辐照后的GdCo器件的光学显微镜图像; (b) 辐照后的GdCo器件的极磁光克尔效应(p-MOKE)图像; (c) 不同辐照条件下GdCo器件的磁滞回线; (d) 剂量为25 ions/nm2辐照区域的磁滞回线; (e) 存在和不存在面内磁场(Bx)的电流感应磁化翻转回路

    Fig. 7.  He+ irradiated prepared devices with anisotropy gradient and field free switching test[91]: (a) Optical microscope image of an ion-irradiated GdCo device; (b) polar magneto-optical Kerr effect (p-MOKE) image of the dose-gradient pattern in the irradiated GdCo device; (c) hysteresis loop of the GdCo device for different irradiation condition; (d) hysteresis loop in the irradiated region at a dose of 25 ions/nm2; (e) current-induced magnetic moment flipping in presence and absence of the in-plane magnetic field (Bx).

    图 8  两种多态翻转器件 (a)—(d) 不同线宽的霍尔十字在μ0Hx = 50 mT面内磁场下的SOT驱动磁矩翻转过程及其模拟的翻转回线[92]; (e)—(g) 在125 mT面内辅助场下, SOT驱动辐照样品的多级翻转反常霍尔与磁光克尔图像[93]

    Fig. 8.  Two polymorphic flipping devices: (a)–(d) SOT-driven magnetic moment flipping process of Hall Cross with different linewidths under the magnetic field in the μ0Hx = 50 mT[92]; (e)–(g) under the auxiliary field of 125 mT, the SOT-driven multistage switching anomalous Hall loop and the magneto-optical Kerr image of irradiated sample[93].

    图 9  (a) 通过不同剂量的N+辐照, 在Ta/CoFeB/MgO结构中形成的斯格明子, 黑色虚线显示从条纹畴开始转变为斯格明子的临界磁场[103]; (b), (c)辐照剂量对斯格明子数目与寸的影响关系[103]

    Fig. 9.  (a) Skyrmion formed in Ta/CoFeB/MgO structures by irradiation with different doses of N+, and the black dashed lines show the critical magnetic field from the stripe domain to the skyrmion[103]; (b), (c) the effect of irradiation dose on the number and size of skyrmion[103].

    图 10  两种降低斯格明子霍尔效应的方法 (a) 通过聚焦离子束辐照, 设置不同的剂量在赛道上制备出的成核点(深紫色)、引导通道(淡紫色)和 钉扎位点(浅紫色). 斯格明子将限制在轨道上, 进而减小偏移[101]; (b) 经过1013 ions/cm2的Ga+离子辐照后的屏障区(浅绿色区域). 斯格明子在运动过程中将被辐照区域排斥, 减弱偏移[105]

    Fig. 10.  Two methods to reduce the Skyrmion Hall effect: (a) Setting up different irradiation dose to prepare nucleation sites (dark purple), guiding channels (purple), and pinned sites (light purple) in the track, skyrmion will be confined in the track, which will in turn diminish the deflection[101]; (b) setting up a barrier region (light green region) with Ga+ ions of 1013 ions/cm2, skyrmion will be repelled by the irradiated region during its movement, which will diminish the deflection[105].

    表 1  有效各向异性keff、热稳定性Δ以及临界翻转电流密度随辐照剂量变化的规律[87]

    Table 1.  Effective anisotropy keff, thermal stability Δ, and critical flipping current as a function of irradiation dose[87].

    Dose/(ions·nm–2) keff/(kJ·m–3) Δ ρ/(μΩ·cm) $ {I}_{{\mathrm{c}}}^{-}/{\mathrm{m}}{\mathrm{A}} $ $ {I}_{{\mathrm{c}}}^{+}/{\mathrm{m}}{\mathrm{A}} $ $ {J}_{{\mathrm{c}}}^{-} $/(MA·cm–2) $ {J}_{{\mathrm{c}}}^{+} $/(MA·cm–2)
    0 537 133 214 –7.5 7.5 –6.0 6.0
    1 521 129 214 –7.5 7.5 –6.0 6.0
    20 257 64 219 –6.2 7.5 –5.0 6.0
    30 153 39 224 –1.0 3.3 –0.8 2.7
    30 38 9 235
    下载: 导出CSV
  • [1]

    Jiles D C 2003 Acta. Mater. 51 5907Google Scholar

    [2]

    Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [3]

    Merazzo K J, Lima A C, Rincón-Iglesias M, Fernandes L C, Pereira N, Lanceros-Mendez S, Martins P 2021 Mater. Horiz 82564Google Scholar

    [4]

    Prabow Y A , Imaduddi R I, Pambud W S, Firmansya R A, Fahruzi A 2021 Mater. Sci. Eng 1010 012028Google Scholar

    [5]

    Sbiaa R, Meng H, Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413Google Scholar

    [6]

    Gschneidner Jr K A, Pecharsky V K 1999 J. Appl. Phys. 85 5365Google Scholar

    [7]

    Coey J M D 2020 Engineering 6 119Google Scholar

    [8]

    Freitas R F, Wilcke W W 2008 Ibm. J. Res. Dev. 52 439Google Scholar

    [9]

    Siddiqa A, Hashem I A T, Yaqoob I, Marjani M, Shamshirband S, Gani A, Nasaruddin F 2016 J Netw. Comput. Appl. 71 151Google Scholar

    [10]

    Zhang Q, Cheng L, Boutaba R 2010 J. Internet Serv. Appl. 1 7Google Scholar

    [11]

    Maslovski S I, Ikonen P M, Kolmakov I, Tretyakov S, Kaunisto M 2005 Prog. Electromagnet. Res. (PIER) 54 61Google Scholar

    [12]

    Pospiskova K, Safarik I 2015 Mater. Lett. 142 184Google Scholar

    [13]

    Zhao Q, Xiong Z H, Qin Z Z, Chen L L, Wu N, Li X X 2016 J. Phys. Chem. Solids 91 1Google Scholar

    [14]

    Zou P, Yu W, Bain J A 2002 IEEE Trans. Magn. 38 3501Google Scholar

    [15]

    Luborsky F, Becker J, Mccary R 1975 IEEE Trans. Magn. 11 1644Google Scholar

    [16]

    Dhara S 2007 Crit. Rev. Solid State Mater 32 1Google Scholar

    [17]

    Chappert C, Bruno P 1988 J. Appl. Phys. 64 5736Google Scholar

    [18]

    Fassbender J, Ravelosona D, Samson Y 2004 J. Phys. D: Appl. Phys. 37 R179Google Scholar

    [19]

    Fassbender J, Mccord J 2008 J. Magn. Magn. Mater. 320 579Google Scholar

    [20]

    Shashank U, Medwal R, Nakamura Y, Mohan J R, Nongjai R, Kandasami A, Rawat R S, Asada H, Gupta S, Fukuma Y 2021 Appl. Phys. Lett. 118 252406Google Scholar

    [21]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar

    [22]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [23]

    Su W, Hu Z Q, Li Y J, Han Y L, Chen Y C, Wang C Y, Jiang Z D, He Z X, Wu J G, Zhou Z Y, Wang Z G, Liu M 2023 Adv. Funct. Mater. 33 2211752Google Scholar

    [24]

    Stanescu D, Ravelosona D, Mathet V, Chappert C, Samson Y, Beigné C, Vernier N, Ferré J, Gierak J, Bouhris E, Fullerton E E 2008 J. Appl. Phys. 103 07B529Google Scholar

    [25]

    Rettner C, Anders S, Baglin J, Thomson T, Terris B 2002 Appl. Phys. Lett. 80 279Google Scholar

    [26]

    Devolder T, Pizzini S, Vogel J, Bernas H, Chappert C, Mathet V, Borowski M 2001 Eur. Phys. J. B 22 193Google Scholar

    [27]

    Kaminsky W, Jones G, Patel N, Booij W, Blamire M, Gardiner S, Xu Y, Bland J A C 2001 Appl. Phys. Lett. 78 1589Google Scholar

    [28]

    Greene P K, Osten J, Lenz K, Fassbender J , Jenkins C, Arenholz E, Endo T, Iwata N, Liu K 2014 Appl. Phys. Lett. 105 072401Google Scholar

    [29]

    Mahendra A, Murmu P P, Acharya S K, Islam A, Fiedler H, Gupta P, Granville S, Kennedy J 2023 Appl. Phys. A 129 500Google Scholar

    [30]

    Weller D, Baglin J, Kellock A, Hannibal K, Toney M, Kusinski G, Lang S, Folks L, Best M, Terris B 2000 J. Appl. Phys. 87 5768Google Scholar

    [31]

    Brodyanski A, Blomeier S, Gnaser H, Bock W, Hillebrands B, Kopnarski M, Reuscher B 2011 Phys. Rev. B 84 214106Google Scholar

    [32]

    Barr C M, Chen E Y, Nathaniel J E, Lu P, Adams D P, Dingreville R E M, Boyce B L, Hattar K, Medlin D L 2022 Sci. Adv. 8 eabn0900Google Scholar

    [33]

    Fassbender J, Mücklich A, Potzger K, Möller W 2006 Nucl. Instrum. Methods Phys. Res. , Sect. B 248 343Google Scholar

    [34]

    Devolder T 2000 Phys. Rev. B 62 5794Google Scholar

    [35]

    Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A, Henschke A, Fassbender J 2009 Appl. Phys. Lett. 95 022502Google Scholar

    [36]

    Sveklo I, Mazalski P, Jaworowicz J, Jamet J P, Vernier N, Mougin A, Ferre J, Kisielewski M, Zablotskii V, Bourhis E, Gierak J, Postava K, Fassbender J, Kanak J, Maziewski A 2018 Acta Phys. Pol. A 133 1215Google Scholar

    [37]

    Maziewski A, Mazalski P, Kurant Z, Liedke M, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T, Rogalev A, Wilhelm F, Gemming T 2012 Phys. Rev. B 85 054427Google Scholar

    [38]

    Lai C H, Yang C H, Chiang C 2003 Appl. Phys. Lett. 83 4550Google Scholar

    [39]

    Ravelosona D, Chappert C, Mathet V, Bernas H 2000 Appl. Phys. Lett. 76 236Google Scholar

    [40]

    Aikoh K, Kosugi S, Matsui T, Iwase A 2011 J. Appl. Phys. 109 07E311Google Scholar

    [41]

    Bernas H, Attané J P, Heinig K H, Halley D, Ravelosona D, Marty A, Auric P, Chappert C, Samson Y 2003 Phys. Rev. Lett. 91 077203Google Scholar

    [42]

    Fassbender J, Liedke M, Strache T, Möller W, Menéndez E, Sort J, Rao K, Deevi S, Nogués J 2008 Phys. Rev. B 77 174430Google Scholar

    [43]

    Cantelli V, Von Borany J, Grenzer J, Fassbender J, Kaltofen R, Schumann J 2006 J. Appl. Phys. 99 08C102Google Scholar

    [44]

    Hellwig O, Weller D, Kellock A, Baglin J, Fullerton E E 2001 Appl. Phys. Lett. 79 1151Google Scholar

    [45]

    Devolder T, Barisic I, Eimer S, Garcia K, Adam J P, Ockert B, Ravelosona D 2013 J. Appl. Phys. 113 203912Google Scholar

    [46]

    Teixeira B, Timopheev A, Caçoilo N, Auffret S, Sousa R, Dieny B, Alves E, Sobolev N 2018 Appl. Phys. Lett. 112 202403Google Scholar

    [47]

    Chang G, Moewes A, Kim S, Lee J, Jeong K, Whang C, Kim D, Shin S C 2006 Appl. Phys. Lett. 88 092504Google Scholar

    [48]

    Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267Google Scholar

    [49]

    Li P Z, Van Der Jagt J W, Beens M, Hintermayr J, Verheijen M A, Bruikman R E, Barcones B, Juge R E O, Lavrijsen R, Ravelosona D E, Koopmans B 2022 Appl. Phys. Lett. 121 172404Google Scholar

    [50]

    Rettner C T, Anders S, Thomson T, Albrecht M, Ikeda Y, Best M E, Terris B D 2002 IEEE Trans. Magn. 38 1725Google Scholar

    [51]

    Chappert C, Bernas H, Ferré J, Kottler V, Jamet J P, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H 1998 Science 280 1919Google Scholar

    [52]

    Mccord J, Gemming T, Schultz L, Fassbender J U R, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502Google Scholar

    [53]

    Ehresmann A, Krug I, Kronenberger A, Ehlers A, Engel D 2004 J. Magn. Magn. Mater. 280 369Google Scholar

    [54]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [55]

    Mougin A, Poppe S, Fassbender J, Hillebrands B 2001 J. Appl. Phys. 89 6606Google Scholar

    [56]

    Mewes T, Lopusnik R, Fassbender J, Hillebrands B 2000 Appl. Phys. Lett. 76 1057Google Scholar

    [57]

    Fassbender J, Poppe S, Mewes T, Juraszek J, Hillebrands B 2003 Appl. Phys. A 77 51Google Scholar

    [58]

    Schafer D, Geshev J, Nicolodi S, Pereira L G, Schmidt J E, Grande P L 2008 Appl. Phys. Lett. 93 042501Google Scholar

    [59]

    Schafer D, Geshev J, Pereira L G, Geshev J 2011 J. Appl. Phys. 109 023905Google Scholar

    [60]

    Mougin A, Mewes T, Lopusnik R, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J, Hillebrands B 2000 IEEE Trans. Magn. 36 2647Google Scholar

    [61]

    Mougin A, Mewes T, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J, Hillebrands B 2001 Phys. Rev. B 63 060409Google Scholar

    [62]

    Shen J D, Yang W B, Kumar A, Zhao H H, Lai Y J, Feng L S, Xu Q Y, Zhang Y Q, Du J, Li Q 2018 J. Magn. Magn. Mater. 451 734Google Scholar

    [63]

    Blachowicz T, Tillmanns A, Fraune M, Ghadimi R, Beschoten B, Güntherodt G 2007 Phys. Rev. B 75 054425Google Scholar

    [64]

    Ehresmann A, Junk D, Engel D, Paetzold A, Röll K 2005 J. Phys. D: Appl. Phys. 38 801Google Scholar

    [65]

    Engel D, Krug I, Schmoranzer H, Ehresmann A, Paetzold A, Röll K, Ocker B, Maass W 2003 J. Appl. Phys. 94 5925Google Scholar

    [66]

    Black-Schaffer A M 2010 Phys. Rev. B 81 205416Google Scholar

    [67]

    Yun J J, Sheng Y B, Guo X, Zheng B W, Chen P, Cao Y, Yan Z, He X D, Jin P, Li J, Cui M H, Shen T L, Wang Z G, Yang D Z, Zuo Y L, Xi L 2021 Phys. Rev. B 104 134416Google Scholar

    [68]

    Blomeier S, Hillebrands B, Demidov V E, Demokritov S O, Reuscher B, Brodyanski A, Kopnarski M 2005 J. Appl. Phys. 98 093503Google Scholar

    [69]

    Wawro A, Kurant Z, Tekielak M, Jakubowski M, Pietruczik A, Böttger R, Maziewski A 2017 Appl. Phys. Lett. 110 252405Google Scholar

    [70]

    Koch L, Samad F, Lenz M, Hellwig O 2020 Phys. Rev. Appl. 13 024029Google Scholar

    [71]

    Samad F, Hlawacek G, Arekapudi S S P K, Xu X, Koch L, Lenz M, Hellwig O 2021 Appl. Phys. Lett. 119 022409Google Scholar

    [72]

    Wawro A, Kurant Z, Jakubowski M, Tekielak M, Pietruczik A, Böttger R, Maziewski A 2018 Phys. Rev. Appl. 9 014029Google Scholar

    [73]

    Quirós C, Peverini L, Zárate L, Alija A, Díaz J, Vélez M, Rodríguez-Rodríguez G, Fauth F, Ziegler E, Alameda J M 2009 J. Phys. Condens. Matter 21 224024Google Scholar

    [74]

    Höink V, Schmalhorst J, Reiss G, Weis T, Lengemann D, Engel D, Ehresmann A 2008 J. Appl. Phys. 103 123903Google Scholar

    [75]

    Cayssol F, Menendez J, Ravelosona D, Chappert C, Jamet J P, Ferre J, Bernas H 2005 Appl. Phys. Lett. 86 022503Google Scholar

    [76]

    Van Der Jagt J W, Jeudy V, Thiaville A, Sall M, Vernier N, Diez L H, Belmeguenai M, Roussigné Y, Chérif S M, Fattouhi M, Lopez-Diaz L, Lamperti A, Juge R, Ravelosona D 2022 Phys. Rev. Appl. 18 054072Google Scholar

    [77]

    Devolder T, Ferré J, Chappert C, Bernas H, Jamet J P, Mathet V 2001 Phys. Rev. B 64 064415Google Scholar

    [78]

    Balan C, Van Der Jagt J W, Fassatoui A, Peña Garcia J, Jeudy V, Thiaville A, Bonfim M, Vogel J, Ranno L, Ravelosona D, Pizzini S 2023 Small 19 2302039Google Scholar

    [79]

    Diez L H, Voto M, Casiraghi A, Belmeguenai M, Roussigné Y, Durin G, Lamperti A, Mantovan R, Sluka V, Jeudy V, Liu Y T, Stashkevich A, Chérif S M, Langer J, Ocker B, Lopez-Diaz L, Ravelosona D 2019 Phys. Rev. B 99 054431Google Scholar

    [80]

    Herrera Diez L, García-Sánchez F, Adam J P, Devolder T, Eimer S, El Hadri M, Lamperti A, Mantovan R, Ocker B, Ravelosona D 2015 Appl. Phys. Lett. 107 032401Google Scholar

    [81]

    Macneill D, Stiehl G, Guimaraes M, Buhrman R, Park J, Ralph D 2017 Nat. Phys. 13 300Google Scholar

    [82]

    Bai Q N, Zhai Y B, Yun J J, Zhang J R, Chang M X, Zuo Y L, Xi L 2021 Appl. Phys. Lett. 119 212404Google Scholar

    [83]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [84]

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J, Koopmans B 2016 Nat. Commun. 7 10854Google Scholar

    [85]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [86]

    Dong K F, Guo Z, Jiao Y Y, Li R F, Sun C, Tao Y, Zhang S, Hong J, You L 2023 Phys. Rev. Appl. 19 024034Google Scholar

    [87]

    Dunne P, Fowley C, Hlawacek G, Kurian J, Atcheson G, Colis S, Teichert N, Kundys B, Venkatesan M, Lindner J R, Deac A M, Hermans T M, Coey J M D, Doudin B 2020 Nano Lett. 20 7036Google Scholar

    [88]

    An S, Baek E, Kim J A, Lee K S, You C Y 2022 Sci. Rep. 12 3465Google Scholar

    [89]

    Yun J J, Zuo Y L, Mao J, Chang M X, Zhang S X, Liu J, Xi L 2019 Appl. Phys. Lett. 115 032404Google Scholar

    [90]

    He X D, Sheng Y B, Yun J J, Zhang J R, Xie H F, Ren Y, Cui B S, Zuo Y L, Xi L 2023 J. Magn. Magn. Mater. 582 170977Google Scholar

    [91]

    Lee T, Kim J, An S, Jeong S, Lee D, Jeong D, Lee N J, Lee K S, You C Y, Park B G, Kim K J, Kim S, Lee S 2023 Acta Mater. 246 118705Google Scholar

    [92]

    Zhao X X, Liu Y, Zhu D Q, Sall M, Zhang X Y, Ma H L, Langer J, Ocker B, Jaiswal S, Jakob G, Kläui M, Zhao W S, Ravelosona D 2020 Appl. Phys. Lett. 116 242401Google Scholar

    [93]

    Kurian J, Joseph A, Cherifi-Hertel S, Fowley C, Hlawacek G, Dunne P, Romeo M, Atcheson G E L, Coey J M D, Doudin B 2023 Appl. Phys. Lett. 122 032402Google Scholar

    [94]

    Giuliano D, Gnoli L, Ahrens V, Roch M R, Becherer M, Turvani G, Vacca M, Riente F 2023 ACS Appl. Electron. Mater. 5 985Google Scholar

    [95]

    Chen R Z, Li C, Li Y, Miles J J, Indiveri G, Furber S, Pavlidis V F, Moutafis C 2020 Phys. Rev. Appl. 14 014096Google Scholar

    [96]

    Joy A, Satheesh S, Anil Kumar P 2023 Appl. Phys. Lett. 123 212405Google Scholar

    [97]

    Peng L C, Zhang Y, He M, Ding B, Wang W H, Li J Q, Cai J W, Wang S G, Wu G H, Shen B G 2018 J. Phys. Condens. Matter 30 065803Google Scholar

    [98]

    Choi H, Tai Y Y, Zhu J X 2019 Phys. Rev. B 99 134437Google Scholar

    [99]

    Schrautzer H, Von Malottki S, Bessarab P F, Heinze S 2022 Phys. Rev. B 105 014414Google Scholar

    [100]

    Gerlinger K, Pfau B, Büttner F, Schneider M, Kern L M, Fuchs J, Engel D, Günther C M, Huang M, Lemesh I, Caretta L, Churikova A, Hessing P, Klose C, Strüber C, Von Korff Schmising C, Huang S, Wittmann A, Litzius K, Metternich D, Battistelli R, Bagschik K, Sadovnikov A, Beach G S D, Eisebitt S 2021 Appl. Phys. Lett. 118 192403Google Scholar

    [101]

    Kern L M, Pfau B, Deinhart V, Schneider M, Klose C, Gerlinger K, Wittrock S, Engel D, Will I, Günther C M, Liefferink R, Mentink J H, Wintz S, Weigand M, Huang M J, Battistelli R, Metternich D, Büttner F, Höflich K, Eisebitt S 2022 Nano Lett. 22 4028Google Scholar

    [102]

    Juge R E O, Bairagi K, Rana K G, Vogel J, Sall M, Mailly D, Pham V T, Zhang Q, Sisodia N, Foerster M, Aballe L, Belmeguenai M, Roussigné Y, Auffret S, Buda-Prejbeanu L D, Gaudin G, Ravelosona D, Boulle O 2021 Nano Lett. 21 2989Google Scholar

    [103]

    Zhao Y K, Wang J L, Xu L X, Yu P Y, Hou M X, Meng F, Xie S, Meng Y F, Zhu R G, Hou Z P, Yang M Y, Luo J, Wu J, Xu Y B, Gao X S, Feng C, Yu G H 2023 ACS Appl. Mater. Interfaces 15 15004Google Scholar

    [104]

    De Jong M C, Smit B H, Meijer M J, Lucassen J, Swagten H J, Koopmans B, Lavrijsen R 2023 Phys. Rev. B 107 094429Google Scholar

    [105]

    Ahrens V, Kiesselbach C, Gnoli L, Giuliano D, Mendisch S, Kiechle M, Riente F, Becherer M 2023 Adv. Mater. 35 2207321Google Scholar

    [106]

    Hu Y, Zhang S F, Zhu Y M, Song C K, Huang J F, Liu C, Meng X, Deng X, Zhu L, Guan C S, Yang H X, Si M S, Zhang J W, Peng Y 2022 ACS Appl. Mater. Interfaces 14 34011Google Scholar

    [107]

    Chen Z Z, He X Y, Cai X Y, Qiu Y, Zhu M M, Yu G L, Zhou H M 2023 Appl. Phys. Lett. 122 142401Google Scholar

    [108]

    Toscano D, Mendonça J P A, Miranda A L S, De Araujo C I L, Sato F, Coura P Z, Leonel S A 2020 J. Magn. Magn. Mater. 504 166655Google Scholar

    [109]

    Fallon K, Hughes S, Zeissler K, Legrand W, Ajejas F, Maccariello D, McFadzean S, Smith W, McGrouther D, Collin S, Reyren N, Cros V, Marrows C H, McVitie, S 2020 Small 16 1907450Google Scholar

    [110]

    Miki S, Hashimoto K, Cho J, Jung J, You C, Ishikawa R, Tamura E, Nomura H, Goto M, Suzuki Y 2023 Appl. Phys. Lett. 122 202401Google Scholar

    [111]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [112]

    Okubo T, Chung S, Kawamura H 2012 Phys. Rev. Lett. 108 017206Google Scholar

    [113]

    Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A E, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [114]

    Wang X S, Yuan H Y, Wang X R 2018 Commun. Phys. 1 31Google Scholar

    [115]

    Zhang S M, Petford-Long A, Phatak C 2016 Sci. Rep. 6 31248Google Scholar

  • [1] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [2] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [4] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化. 物理学报, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [5] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [8] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [9] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰. 薄膜异质结中磁性斯格明子的相关研究. 物理学报, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [10] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [11] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [12] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [13] 李子安, 柴可, 张明, 朱春辉, 田焕芳, 杨槐馨. 纳米结构中磁斯格明子的原位电子全息研究. 物理学报, 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [14] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [15] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [16] 法涛, 陈田祥, 韩录会, 莫川. He,Au离子辐照AuCu3致元素表面偏析. 物理学报, 2016, 65(3): 038201. doi: 10.7498/aps.65.038201
    [17] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [18] 王震遐, 潘强岩, 胡建刚, 勇振中, 吴永庆, 朱志远. 双离子(40Ar+, C2H+6)辐照合成金刚石纳米晶颗粒. 物理学报, 2007, 56(8): 4829-4833. doi: 10.7498/aps.56.4829
    [19] 覃怀莉, 薛建明, 赖江南, 王建勇, 苗 琦, 张伟明, 马 磊, 颜 莎, 赵渭江, 顾红雅, 王宇钢. 拟南芥胚的不同区域对MeV离子辐照的响应. 物理学报, 2006, 55(11): 5991-5995. doi: 10.7498/aps.55.5991
    [20] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
计量
  • 文章访问数:  2136
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-18
  • 修回日期:  2024-05-16
  • 上网日期:  2024-05-20
  • 刊出日期:  2024-07-05

/

返回文章
返回