搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型载流子积累的逆导型横向绝缘栅双极晶体管

段宝兴 王佳森 唐春萍 杨银堂

引用本文:
Citation:

新型载流子积累的逆导型横向绝缘栅双极晶体管

段宝兴, 王佳森, 唐春萍, 杨银堂

Noval carrier accumulation reverse-conducting lateral insulated gate bipolar transistor

Duan Bao-Xing, Wang Jia-Sen, Tang Chun-Ping, Yang Yin-Tang
PDF
HTML
导出引用
  • 通过引入n+阳极在体内集成续流二极管的逆导型横向绝缘栅双极晶体管(reverse-conducting lateral insulated gate bipolar transistor, RC-LIGBT)可以实现反向导通, 并且优化器件的关断特性, 是功率集成电路中一个有竞争力的器件. 本文提出了一种新型载流子积累的RC-LIGBT, 它具有电子控制栅(electron-controlled gate, EG)和分离短路阳极(separated short-anode, SSA), 可以同时实现较低的导通压降和关断损耗. 在正向导通状态, 漂移区上方的EG结构可以在漂移区的表面积累一个高密度的电子层, 从而大大地降低器件的导通压降. 同时, SSA结构的使用还极大优化了器件的关断损耗. 另外, 低掺杂p型漂移区与SSA结构配合, 可以简单地实现反向导通并且消除回吸电压. 仿真结果表明, 所提出的器件具有优秀的导通压降与关断损耗之间的折衷关系, 其导通压降为1.16 V, 比SSA LIGBT低55%, 其关断损耗为0.099 mJ/cm2, 比SSA LIGBT和常规LIGBT分别低38.5%和94.7%.
    Reverse-conducting lateral insulated gate bipolar transistor (RC-LIGBT) with freewheeling diode integrated in the body by introducing n+ anode can realize the reverse conduction and optimize the turn-off characteristics of the device, which is a promising device in a power integrated circuit. In this work, a novel RC-LIGBT with electron-controlled gate (EG) and separated short-anode (SSA) is proposed and investigated by TCAD simulation, which can achieve low on-state voltage drop (Von) and low turn-off loss (Eoff) at the same time. The EG structure of p-n-n+-p (p+ region/n-type silicon region/n-type barrier layer/p+ region) is adopted, the gate electrode and anode electrode are connected by the EG structure. In the forward conduction state, a high-density electron accumulation layer is formed on the surface of the drift region by EG structure, which greatly reduces the Von of the device. At the same time, the use of the SSA structure can also optimize the Eoff of the device by forming an additional electron extraction channel. In addition, based on the EG structure, a low-doping p-drift can be combined with the SSA structure to simply achieve reverse-conduction and snapback-free characteristics. Furthermore, the EG structure and the SSA structure can complement each other. On the one hand, the high-density electron accumulation layer formed by EG structure compensates for the weakened conductance modulation effect caused by the SSA structure. On the other hand, the electron extraction channel of the SSA structure enables a large number of accumulated electrons to be removed quickly. The simulation results show that the proposed device has an excellent trade-off relationship between Von and Eoff, specifically, Von is 1.16V, which is 55% lower than that of SSA LIGBT, and Eoff is 0.099 mJ/cm2, which is 38.5% and 94.7% lower than that of SSA LIGBT and conventional LIGBT, respectively.
      通信作者: 段宝兴, bxduan@163.com
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    [1]

    Sakurai N, Mori M, Yatsuo T 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and ICs Tokyo, Japan, April 4–6, 1990 p66

    [2]

    Disney D, Letavic T, Trajkovic T, Terashima T, Nakagawa A 2017 IEEE T. Electron Dev. 64 659Google Scholar

    [3]

    Letavic T, Petruzzello J, Claes J, Eggenkamp P, Janssen E, van der Wal A 2006 IEEE International Symposium on Power Semiconductor Devices and IC's Naples, Italy, June 4–8, 2006 p1

    [4]

    Gu Y, Ma J, Zhang L, Wei J X, Li S, Liu S Y, Zhang S, Zhu J, Sun W F 2024 IEEE T. Electron Dev. 71 381Google Scholar

    [5]

    Hara K, Wada S, Sakano J, Oda T, Sakurai K, Yamashita H, Utsumi T 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's Waikoloa, Hawaii, USA, June 15–19, 2014 p418

    [6]

    Gough P A, Simpson M R, Rumennik V 1986 International Electron Devices Meeting Los Angeles, CA, USA, December 7–10, 1986 p218

    [7]

    Sin J K O, Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45Google Scholar

    [8]

    Duan S, Qiao M, Mao K, Zhong B, Jiang L, Zhang B 2010 IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 p897

    [9]

    Simpson M R 1991 IEEE T. Electron Dev. 38 1633Google Scholar

    [10]

    Chen W S, Zhang B, Li Z J 2010 IEEE Electron Dev. Lett. 31 467Google Scholar

    [11]

    Sun L C, Duan B X, Yang Y T 2021 IEEE T. Electron Dev. 68 2408Google Scholar

    [12]

    Chul J H, Byeon D S, Oh J K, Han M K, Choi Proc Y I 2002 12th International Symposium on Power Semiconductor Devices & ICs Toulouse, France, May 22–25, 2002 p149

    [13]

    Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y, Zhang S 2016 IEEE T. Electron Dev. 63 2003Google Scholar

    [14]

    Huang L H, Luo X R, Wei J, Zhou K, Deng G Q, Sun T, Ouyang D F, Fan D, Zhang B 2017 IEEE T. Electron Dev. 64 3961Google Scholar

    [15]

    Hardikar S, Tadikonda R, Sweet M, Vershinin K, Narayanan E M S 2003 IEEE Electron Dev. Lett. 24 701Google Scholar

    [16]

    Sun L C, Duan B X, Wang Y D, Yang Y T 2019 IEEE T. Electron Dev. 66 2675Google Scholar

    [17]

    Duan B X, Sun L C, Yang Y T 2019 IEEE Electron Dev. Lett. 40 63Google Scholar

    [18]

    Liu S Y, Zhang Y, Zhang Z J, Inuishi M 2022 6th IEEE Electron Devices Technology & Manufacturing Conference Oita, Japan, March 6–9, 2022 p204

    [19]

    Xia Y, Chen W J, Liu C, Sun R Z, Li Z J, Zhang B Zhang 2022 IEEE T. Electron Dev. 69 6956Google Scholar

    [20]

    夏庆锋 2007 硕士学位论文 (杭州: 浙江大学)

    Xia Q F 2007 M. S. Thesis (Hangzhou: Zhejiang University

    [21]

    Bruel M, Aspar B, Charlet B, Maleville C, Poumeyrol T, Soubie A, Auberton-Herve A J, Lamure J M, Barge T, Metral F, Trucchi S 1995 IEEE International SOI Conference Proceedings Tucson, AZ, USA, October 3–5, 1995 p178

  • 图 1  (a) ES LIGBT的横截面示意图; (b) SSA LIGBT的横截面示意图; (c) EG结构示意图; (d) EG结构电势分布图(在正向导通状态下)

    Fig. 1.  Schematic cross-section of (a) ES LIGBT and (b) SSA LIGBT; (c) schematic diagram of EG structure; (d) potential distribution of EG structure (in the forward conduction state).

    图 2  ES LIGBT的关键工艺流程图 (a)准备双层SOI晶圆; (b)刻蚀; (c)扩散形成P-base和N-buffer; (d)离子注入形成阳极结构和阴极结构; (e)对顶层硅进行离子注入; (f)金属化, 形成电极

    Fig. 2.  Key process flow to fabricate ES LIGBT: (a) Preparing the double SOI wafer; (b) etching; (c) diffusion to form P-base and N-buffer; (d) ion implantation to form an anode structure and a cathode structure; (e) ion implantation of the top layer silicon; (f) metallization to form electrodes.

    图 3  (a) LIGBT的击穿特性, 插图为击穿时所提出的ES LIGBT的总电流密度, 其中JAC是阳极电流密度, VAC是阳极和阴极之间的电压; (b) Ntop对ES LIGBT击穿电压的影响

    Fig. 3.  (a) Breakdown characteristics for LIGBTs. The inset is the total current density of the proposed ES LIGBT at the time of breakdown, JAC is the anode current density and VAC is the voltage between the anode and cathode. (b) Impact of Ntop on BV for the ES LIGBT.

    图 4  (a) 器件的正向导通特性; (b) ES LIGBT在正向导通状态(JAC = 100 A/cm2)下的电子密度分布

    Fig. 4.  (a) Forward conduction characteristics of these devices; (b) electron density distribution of ES LIGBT in the forward conduction state (at JAC = 100 A/cm2).

    图 5  (a) 反向恢复特性的仿真测试, 其中VG是栅极电压, 栅极电阻RG = 10 Ω, 杂散电感Ls = 10 μH, 负载电感LC = 10 mH, 直流电源电压VCC = 100 V; (b) ES LIGBT和SSA LIGBTs的反向导通特性和反向恢复特性; (c) 反向恢复过程中不同时刻t1t5的空穴密度分布

    Fig. 5.  (a) Simulation test circuit for reverse recovery characteristics, where VG is the gate voltage, gate resistance RG = 10 Ω, stray inductance Ls = 10 μH, load inductance LC = 10 mH, and dc power supply voltage VCC = 100 V; (b) RC and reverse recovery characteristics of ES LIGBT and SSA LIGBTs; (c) hole density distribution at different moment (t1t5) of reverse recovery process.

    图 6  (a) LIGBTs的关断特性; (b) 关断过程中不同时刻(t1t5)的空穴密度分布

    Fig. 6.  (a) Turn-off characteristics of LIGBTs; (b) hole density distribution at different moment (t1t5) of turn-off process.

    图 7  在关断过程中, ES LIGBT和SSA LIGBT的阳极电流成分, 其中IACe是阳极的电子电流, IACh是阳极的空穴电流, IAC是阳极总电流

    Fig. 7.  Anode current components of ES LIGBT and SSA LIGBT during the turn-off, IACe is the electron current of the anode, IACh is the hole current of the anode, and IAC is the total current of the anode.

    图 8  LA对提出的ES LIGBT性能的影响

    Fig. 8.  Influence of LA on the performance of the proposed ES LIGBT.

    图 9  LIGBTs的EoffVon折衷关系

    Fig. 9.  Eoff and Von tradeoff relationship for these LIGBTs

    表 1  仿真中的关键参数

    Table 1.  Key parameters used in simulation.

    参数符号 参数含义 常规LIGBT SSA LIGBT ES LIGBT
    Ld/μm 漂移区长度 15 15 15
    Tbox/μm 埋氧层厚度 3 3 3
    Tox/nm 栅氧化层厚度 50 50 50
    Tn/μm 漂移区厚度 4 4 4
    LA/μm P+阳极和N+阳极间长度 15 2
    Ttop/μm 顶层硅栅厚度 1
    Ndrift/(1014 cm–3) 漂移区掺杂浓度 18 18 1
    Nsubstrate/(1014 cm–3) P型衬底掺杂浓度 1 1 1
    Nbuffer/(1017 cm–3) N型缓冲层掺杂浓度 2 2 2
    Np-anode/(1019 cm–3) P+阳极掺杂浓度 5 5 5
    Ntop/(1015 cm–3) 顶层N型硅区掺杂浓度 9.1
    Nbarrier/(1018 cm–3) 顶层N型势垒层掺杂浓度 5
    下载: 导出CSV
  • [1]

    Sakurai N, Mori M, Yatsuo T 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and ICs Tokyo, Japan, April 4–6, 1990 p66

    [2]

    Disney D, Letavic T, Trajkovic T, Terashima T, Nakagawa A 2017 IEEE T. Electron Dev. 64 659Google Scholar

    [3]

    Letavic T, Petruzzello J, Claes J, Eggenkamp P, Janssen E, van der Wal A 2006 IEEE International Symposium on Power Semiconductor Devices and IC's Naples, Italy, June 4–8, 2006 p1

    [4]

    Gu Y, Ma J, Zhang L, Wei J X, Li S, Liu S Y, Zhang S, Zhu J, Sun W F 2024 IEEE T. Electron Dev. 71 381Google Scholar

    [5]

    Hara K, Wada S, Sakano J, Oda T, Sakurai K, Yamashita H, Utsumi T 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's Waikoloa, Hawaii, USA, June 15–19, 2014 p418

    [6]

    Gough P A, Simpson M R, Rumennik V 1986 International Electron Devices Meeting Los Angeles, CA, USA, December 7–10, 1986 p218

    [7]

    Sin J K O, Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45Google Scholar

    [8]

    Duan S, Qiao M, Mao K, Zhong B, Jiang L, Zhang B 2010 IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 p897

    [9]

    Simpson M R 1991 IEEE T. Electron Dev. 38 1633Google Scholar

    [10]

    Chen W S, Zhang B, Li Z J 2010 IEEE Electron Dev. Lett. 31 467Google Scholar

    [11]

    Sun L C, Duan B X, Yang Y T 2021 IEEE T. Electron Dev. 68 2408Google Scholar

    [12]

    Chul J H, Byeon D S, Oh J K, Han M K, Choi Proc Y I 2002 12th International Symposium on Power Semiconductor Devices & ICs Toulouse, France, May 22–25, 2002 p149

    [13]

    Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y, Zhang S 2016 IEEE T. Electron Dev. 63 2003Google Scholar

    [14]

    Huang L H, Luo X R, Wei J, Zhou K, Deng G Q, Sun T, Ouyang D F, Fan D, Zhang B 2017 IEEE T. Electron Dev. 64 3961Google Scholar

    [15]

    Hardikar S, Tadikonda R, Sweet M, Vershinin K, Narayanan E M S 2003 IEEE Electron Dev. Lett. 24 701Google Scholar

    [16]

    Sun L C, Duan B X, Wang Y D, Yang Y T 2019 IEEE T. Electron Dev. 66 2675Google Scholar

    [17]

    Duan B X, Sun L C, Yang Y T 2019 IEEE Electron Dev. Lett. 40 63Google Scholar

    [18]

    Liu S Y, Zhang Y, Zhang Z J, Inuishi M 2022 6th IEEE Electron Devices Technology & Manufacturing Conference Oita, Japan, March 6–9, 2022 p204

    [19]

    Xia Y, Chen W J, Liu C, Sun R Z, Li Z J, Zhang B Zhang 2022 IEEE T. Electron Dev. 69 6956Google Scholar

    [20]

    夏庆锋 2007 硕士学位论文 (杭州: 浙江大学)

    Xia Q F 2007 M. S. Thesis (Hangzhou: Zhejiang University

    [21]

    Bruel M, Aspar B, Charlet B, Maleville C, Poumeyrol T, Soubie A, Auberton-Herve A J, Lamure J M, Barge T, Metral F, Trucchi S 1995 IEEE International SOI Conference Proceedings Tucson, AZ, USA, October 3–5, 1995 p178

  • [1] 段宝兴, 刘雨林, 唐春萍, 杨银堂. 肖特基结多数载流子积累新型绝缘栅双极晶体管. 物理学报, 2024, 73(7): 078501. doi: 10.7498/aps.73.20231768
    [2] 缑石龙, 马武英, 姚志斌, 何宝平, 盛江坤, 薛院院, 潘琛. 基于栅控横向PNP双极晶体管的氢氛围中辐照损伤机制. 物理学报, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [3] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象. 物理学报, 2020, 69(8): 086101. doi: 10.7498/aps.69.20191896
    [4] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [5] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [6] 谭骥, 朱阳军, 卢烁今, 田晓丽, 滕渊, 杨飞, 张广银, 沈千行. 绝缘栅双极型晶体管感性负载关断下电压变化率的建模与仿真研究. 物理学报, 2016, 65(15): 158501. doi: 10.7498/aps.65.158501
    [7] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [8] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究. 物理学报, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [9] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [10] 霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东. 单载流子传输的双异质结光敏晶体管探测器的研究. 物理学报, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [11] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [12] 刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎. 氟化时间对环氧树脂绝缘表面电荷积累的影响. 物理学报, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [13] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离. 物理学报, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [14] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺. 物理学报, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] 陈建军, 陈书明, 梁斌, 刘必慰, 池雅庆, 秦军瑞, 何益百. p型金属氧化物半导体场效应晶体管界面态的积累对单粒子电荷共享收集的影响. 物理学报, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [16] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析. 物理学报, 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [17] 刘玉荣, 陈伟, 廖荣. 低工作电压聚噻吩薄膜晶体管. 物理学报, 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [18] 刘红侠, 尹湘坤, 刘冰洁, 郝跃. 应变绝缘层上硅锗p型金属氧化物场效应晶体管的阈值电压解析模型. 物理学报, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [19] 汤晓燕, 张义门, 张玉明. 界面态电荷对6H碳化硅N沟MOSFET阈值电压和跨导的影响. 物理学报, 2002, 51(4): 771-775. doi: 10.7498/aps.51.771
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  1260
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 修回日期:  2024-05-27
  • 上网日期:  2024-06-21
  • 刊出日期:  2024-08-05

/

返回文章
返回