搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行偏振三色场对原子非次序双电离的调控

贺佟佟 刘子超 李盈傧 黄诚

引用本文:
Citation:

平行偏振三色场对原子非次序双电离的调控

贺佟佟, 刘子超, 李盈傧, 黄诚

Manipulating nonsequential double ionization of atoms by parallel polarized three-color laser fields

He Tong-Tong, Liu Zi-Chao, Li Ying-Bin, Huang Cheng
PDF
HTML
导出引用
  • 本文利用三维经典系综模型研究了平行偏振三色场中He原子的非次序双电离. 利用强度相同的1600 nm和800 nm脉冲组成驱动场, 低强度的400 nm脉冲作为控制场. 研究结果表明, 第一次返回碰撞轨道、奇数次返回碰撞轨道(不含第一次返回碰撞)和偶数次返回碰撞轨道释放的电子对和离子分别处在电子关联动量谱和离子动量谱上的不同区域. 通过改变控制场的相位, 可以很好地控制不同返回次数碰撞轨道在双电离中的占比, 进而实现对电子动量分布和离子动量分布的控制. 另外, 多次返回碰撞导致的双电离以碰撞电离机制为主, 而第一次返回碰撞导致的双电离以碰撞激发电离机制为主, 所以通过改变控制场的相位也能实现对双电离机制的调控.
    Nonsequential double ionization (NSDI) of He atoms in a parallel polarized three-color field is investigated by using a three-dimensional classical ensemble model. The driving field is composed of 1600-nm and 800-nm laser pulses with equal intensity. A weak 400-nm laser pulse is used as a controlling field. The results indicate that in the correlated electron momentum distribution and ion momentum distribution, the electron pairs and ions of the first returning recollision (FRR) trajectory, the odd-returning recollision (ORR) trajectory (excluding FRR), and the even-returning recollision (ERR) trajectory are located in different regions separated well from each other. The electron pairs from FRR trajectories mainly distribute around the origin, and those electron pairs from ORR and ERR trajectories respectively cluster in the first quadrant and the third quadrant. With the increase of the phase of the controlling field, the proportion of FRR trajectories in NSDI first increases and then decreases, and the proportions of those trajectories with the returning number more than one first decrease and then increase, which leads to the fact that with the increase of the phase of the controlling field, the anticorrelated emissions first increase and then decrease and correspondingly the ion momentum distribution evolves from a double-hump to a triple-hump and then to a double-hump structure. Moreover, NSDI from multiple-returning recollision trajectories mainly occur through recollision-induced direct ionization (RDI) mechanism, while NSDI from the FRR trajectories mainly occurs through recollision-induced excitation with subsequent ionization (RESI) mechanism. Thus the dominant NSDI ionization mechanism can also be controlled by changing the phase of the controlling field.
      通信作者: 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12074329, 12004323)资助的课题.
      Corresponding author: Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074329, 12004323).
    [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [2]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [3]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [4]

    Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443Google Scholar

    [5]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [6]

    Wang Y, Xu S, Quan W, Gong C, Lai X, Hu S, Liu M, Chen J, Liu X 2016 Phys. Rev. A 94 053412Google Scholar

    [7]

    Li H, Chen J, Jiang H, Liu J, Fu P, Gong Q, Yan Z, Wang B 2009 J. Phys. B 42 125601Google Scholar

    [8]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [9]

    Zhou Y, Liao Q, Zhang Q, Hong W, Lu P 2010 Opt. Express 18 632Google Scholar

    [10]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [11]

    Kang H, Chen S, Wang Y, Chu W, Yao J, Chen J, Liu X, Cheng Y, Xu Z 2019 Phys. Rev. A 100 033403Google Scholar

    [12]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [13]

    Li Y, Wang X, Yu B, Tang Q, Wang G, Wan J 2016 Sci. Rep. 6 37413Google Scholar

    [14]

    Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [15]

    He T, Liu Z, Li Y, Yu B, Huang C 2024 Opt. Laser Technol. 178 111215Google Scholar

    [16]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [17]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [18]

    Hao X, Chen J, Li W, Wang B, Wang X, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [19]

    Li X, Qiao Y, Wu D, Yu R, Chen J, Wang J, Guo F, Yang Y 2023 Chinese Phys. B 33 013302Google Scholar

    [20]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [21]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett 119 203202Google Scholar

    [22]

    Dong S, Chen X, Zhang J, Ren X 2016 Phys. Rev. A 93 053410Google Scholar

    [23]

    Rudenko A, Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys. Rev. Lett. 99 263003Google Scholar

    [24]

    Chen Z, Li S, Kang H, Morishita T, Bartschat K 2022 Opt. Express 30 44039Google Scholar

    [25]

    Chen X, Ruiz C, He F, Zhang J 2020 Opt. Express 28 14884Google Scholar

    [26]

    Huang C, Zhong M, Wu Z 2016 Opt. Express 24 28361Google Scholar

    [27]

    Ma X, Zhou Y, Li N, Li M, Lu P 2018 Opt. Laser Technol. 108 235Google Scholar

    [28]

    Luo S, Ma X, Xie H, Li M, Zhou Y, Cao W, Lu P 2018 Opt. Express 26 13666Google Scholar

    [29]

    He T, Liu Z, Liao J, Li Y, Yu B, Huang C 2024 Phys. Rev. A 109 043109Google Scholar

    [30]

    He L, Li Y, Zhang Q, Lu P 2013 Opt. Express 21 2683Google Scholar

    [31]

    Qin Y, Guo F, Li S, Yang Y, Chen G 2014 Chin. Phys. B 23 093205Google Scholar

    [32]

    Ho P J, Panfili R, Haan S L, Eberly J H 2005 Phys. Rev. Lett. 94 093002Google Scholar

    [33]

    Liu Z, Huang C, He T, Liao J, Li Y, Yu B 2024 Phys. Chem. Chem. Phys. 26 4572Google Scholar

    [34]

    Mauger F, Chandre C, Uzer T 2009 Phys. Rev. Lett. 102 173002Google Scholar

    [35]

    廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚 2023 物理学报 72 193202Google Scholar

    Liao J Y, He T T, Su J, Liu Z C, Li Y B, Yu B H, Huang C 2023 Acta Phys. Sin. 72 193202Google Scholar

    [36]

    黄诚, 苏杰, 廖健颖, 刘子超, 贺佟佟, 李盈傧 2023 光子学报 52 1126003Google Scholar

    Huang C, Su J, Liao J Y, Liu Z C, He T T, Li Y B 2023 Acta Photonica Sin. 52 1126003Google Scholar

    [37]

    Tong A, Li Q, Ma X, Zhou Y, Lu P 2019 Opt. Express 27 6415Google Scholar

  • 图 1  φ = 0.8π时, 一个光周期内的激光电场波形

    Fig. 1.  Waveform of the laser electric field within an optical cycle for φ = 0.8π.

    图 2  激光偏振方向上的关联电子动量分布 (a) φ = 0; (b) φ = 0.6π; (c) φ = 1.2π; (d) φ = 1.8π

    Fig. 2.  Correlated electron momentum distributions along the laser polarization direction: (a) φ = 0; (b) φ = 0.6π; (c) φ = 1.2π; (d) φ = 1.8π.

    图 3  φ = 1.2π时, 前5次返回碰撞事件的关联电子动量分布

    Fig. 3.  Correlated electron momentum distributions of NSDI for those trajectories with return numbers from 1 to 5 for φ = 1.2π.

    图 4  激光偏振方向上的离子动量分布 (a) φ = 0; (b) φ = 0.6π; (c) φ = 1.2π; (d) φ = 1.8π

    Fig. 4.  Ion momentum distributions along the laser polarization direction: (a) φ = 0; (b) φ = 0.6π; (c) φ = 1.2π; (d) φ = 1.8π.

    图 5  前7次返回碰撞轨道在NSDI中的占比对控制场相位的依赖

    Fig. 5.  Proportions of those trajectories with different return numbers in NSDI as a function of the phase of the controlling pulse.

    图 6  三类轨道(黑色, FRR轨道; 紫色, ORR轨道; 红色, ERR轨道)的单电离时间(a), (d), (g)、碰撞时间(b), (e), (h)和双电离时间分布(c), (f), (i) (a)—(c) φ = 0; (d)—(f) φ = 0.6π; (g)—(i) φ = 1.2π

    Fig. 6.  Time distributions of single ionization (a), (d), (g), recollision (b), (e), (h) and double ionization (c), (f), (i) for FRR trajectories (black bars), ORR trajectories (purple bars) and ERR trajectories (red bars): (a)–(c) φ = 0; (d)–(f) φ = 0.6π; (g)–(i) φ = 1.2π.

    图 7  各类轨道中RDI机制的比例对控制场相位的依赖

    Fig. 7.  Proportions of RDI mechanism for different types of trajectories as a function of the phase of the controlling pulse.

    图 8  三类轨道的返回能量分布 (a) φ = 0.8π; (b) φ = 1.2π

    Fig. 8.  Returning energy distributions for the three types of trajectories: (a) φ = 0.8π; (b) φ = 1.2π.

  • [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642Google Scholar

    [2]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [3]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [4]

    Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443Google Scholar

    [5]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [6]

    Wang Y, Xu S, Quan W, Gong C, Lai X, Hu S, Liu M, Chen J, Liu X 2016 Phys. Rev. A 94 053412Google Scholar

    [7]

    Li H, Chen J, Jiang H, Liu J, Fu P, Gong Q, Yan Z, Wang B 2009 J. Phys. B 42 125601Google Scholar

    [8]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [9]

    Zhou Y, Liao Q, Zhang Q, Hong W, Lu P 2010 Opt. Express 18 632Google Scholar

    [10]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [11]

    Kang H, Chen S, Wang Y, Chu W, Yao J, Chen J, Liu X, Cheng Y, Xu Z 2019 Phys. Rev. A 100 033403Google Scholar

    [12]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [13]

    Li Y, Wang X, Yu B, Tang Q, Wang G, Wan J 2016 Sci. Rep. 6 37413Google Scholar

    [14]

    Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [15]

    He T, Liu Z, Li Y, Yu B, Huang C 2024 Opt. Laser Technol. 178 111215Google Scholar

    [16]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [17]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [18]

    Hao X, Chen J, Li W, Wang B, Wang X, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [19]

    Li X, Qiao Y, Wu D, Yu R, Chen J, Wang J, Guo F, Yang Y 2023 Chinese Phys. B 33 013302Google Scholar

    [20]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [21]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett 119 203202Google Scholar

    [22]

    Dong S, Chen X, Zhang J, Ren X 2016 Phys. Rev. A 93 053410Google Scholar

    [23]

    Rudenko A, Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys. Rev. Lett. 99 263003Google Scholar

    [24]

    Chen Z, Li S, Kang H, Morishita T, Bartschat K 2022 Opt. Express 30 44039Google Scholar

    [25]

    Chen X, Ruiz C, He F, Zhang J 2020 Opt. Express 28 14884Google Scholar

    [26]

    Huang C, Zhong M, Wu Z 2016 Opt. Express 24 28361Google Scholar

    [27]

    Ma X, Zhou Y, Li N, Li M, Lu P 2018 Opt. Laser Technol. 108 235Google Scholar

    [28]

    Luo S, Ma X, Xie H, Li M, Zhou Y, Cao W, Lu P 2018 Opt. Express 26 13666Google Scholar

    [29]

    He T, Liu Z, Liao J, Li Y, Yu B, Huang C 2024 Phys. Rev. A 109 043109Google Scholar

    [30]

    He L, Li Y, Zhang Q, Lu P 2013 Opt. Express 21 2683Google Scholar

    [31]

    Qin Y, Guo F, Li S, Yang Y, Chen G 2014 Chin. Phys. B 23 093205Google Scholar

    [32]

    Ho P J, Panfili R, Haan S L, Eberly J H 2005 Phys. Rev. Lett. 94 093002Google Scholar

    [33]

    Liu Z, Huang C, He T, Liao J, Li Y, Yu B 2024 Phys. Chem. Chem. Phys. 26 4572Google Scholar

    [34]

    Mauger F, Chandre C, Uzer T 2009 Phys. Rev. Lett. 102 173002Google Scholar

    [35]

    廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚 2023 物理学报 72 193202Google Scholar

    Liao J Y, He T T, Su J, Liu Z C, Li Y B, Yu B H, Huang C 2023 Acta Phys. Sin. 72 193202Google Scholar

    [36]

    黄诚, 苏杰, 廖健颖, 刘子超, 贺佟佟, 李盈傧 2023 光子学报 52 1126003Google Scholar

    Huang C, Su J, Liao J Y, Liu Z C, He T T, Li Y B 2023 Acta Photonica Sin. 52 1126003Google Scholar

    [37]

    Tong A, Li Q, Ma X, Zhou Y, Lu P 2019 Opt. Express 27 6415Google Scholar

  • [1] 赵零一, 刘金磊, 江涛, 郎跃, 赵增秀. 强场激发Rydberg态的激光包络调控. 物理学报, 2024, 73(24): 243201. doi: 10.7498/aps.73.20241222
    [2] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [3] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [4] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [5] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [6] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [7] 秦朝朝, 崔明焕, 宋迪迪, 何伟. CdSeS合金结构量子点的多激子俄歇复合过程. 物理学报, 2019, 68(10): 107801. doi: 10.7498/aps.68.20190291
    [8] 叶树集, 李传召, 张佳慧, 谈军军, 罗毅. 生物分子结合水的结构与动力学研究进展. 物理学报, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [9] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [10] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用. 物理学报, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [11] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [12] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [13] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [14] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [15] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [16] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [17] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [18] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [19] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [20] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
计量
  • 文章访问数:  1582
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-25
  • 修回日期:  2024-06-10
  • 上网日期:  2024-07-04
  • 刊出日期:  2024-08-20

/

返回文章
返回