搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辐射制冷与电致变色的可调节多层膜性能研究

王宇枭 成泽帅 江可扬 魏琳扬 历秀明

引用本文:
Citation:

基于辐射制冷与电致变色的可调节多层膜性能研究

王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明
cstr: 32037.14.aps.73.20240863

Performance of adjustable multilayer film based on radiation cooling and electrochromism

Wang Yu-Xiao, Cheng Ze-Shuai, Jiang Ke-Yang, Wei Lin-Yang, Li Xiu-Ming
cstr: 32037.14.aps.73.20240863
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对车用空调的高能耗问题, 设计了一种将辐射制冷膜和电致变色膜结合的可调节多层膜. 为研究多层膜的降温与温度调节性能, 搭建了贴膜方箱装置, 并在室内对贴膜装置进行太阳光模拟器照射实验, 结果表明, 多层膜相比单层辐射制冷膜最大箱内降温提升约9.8 ℃, 且能通过改变多层膜透过率实现约4.6 ℃的温度调节, 具有较强的降温与温度调节潜力. 为研究多层膜的环境适应性, 在夏季和冬季的室外对贴膜装置进行实际太阳照射实验, 结果表明: 夏季多层膜降温效果明显, 最大箱内降温高达12.9 ℃; 而冬季多层膜降温效果较弱, 最大箱内降温仅有1.9 ℃, 具有良好的环境适应性. 综上, 该多层膜可为降低汽车空调能耗提供一种新的解决方案.
    Energy and environmental challenges caused by the excessive consumption of fossil fuels are major concerns worldwide, and the use of automotive air conditioning can increase total fuel consumption by 10% to 30%, thereby exacerbating these problems. To reduce the energy consumption for automotive air conditioning, a multilayer-film design based on radiative cooling and electrochromic modulation is proposed for regulating the temperature inside vehicles. The designed multilayer-film not only passively realizes temperature drop but also actively regulates the entry of solar radiation, which can help the vehicle air conditioning system to adjust the interior temperature autonomously. To verify its effectiveness, a film-applied empty box device is designed for radiometric temperature measurement. Experimental results indicate that the maximum interior temperature drop of the multilayer film increases by approximately 9.8 ℃ compared with that of single-layer films in the sunlight irradiation, and dynamic temperature regulation of about 4.6 ℃ can be achieved by adjusting the transmittance of the multilayer film. To study the environmental adaptability of the multilayer film, experiments are conducted on an outdoor film-applied device during the summer and winter in Shenyang, China ($\rm 41^\circ44'N, 123^\circ39'E$), the place which is characterized by a typical temperate continental climate. Results indicate that under high temperature conditions of 30–40 ℃ in summer, the maximum internal temperature drop of the multilayer film reaches 12.9 ℃; while under low temperature conditions of 0–15 ℃ in autumn and winter, the maximum internal temperature drop is only 1.9 ℃, preventing the interior temperature from being too low. In addition, the maximum interior temperature drop increases with the solar radiation intensity and ambient temperature increasing. Therefore, the proposed multilayer-film design, with its potential for temperature self-regulation, provides a promising solution for reducing energy consumption and improving passenger comfort.
      通信作者: 魏琳扬, weilinyang@smm.neu.edu.cn ; 历秀明, lixiuming@smm.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52106079)、辽宁省自然科学基金联合基金(批准号: 2023-MSBA-059)和中央高校基本科研业务费(批准号: N2325021)资助的课题.
      Corresponding author: Wei Lin-Yang, weilinyang@smm.neu.edu.cn ; Li Xiu-Ming, lixiuming@smm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52106079), the Joint Funds of the Natural Science Foundation of Liaoning Province of China (Grant No. 2023-MSBA-059), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. N2325021).
    [1]

    国家统计局 2023 中国统计年鉴 42 284

    National Bureau of Statistics 2023 China Stat. Yearbook 42 284

    [2]

    Mogro A E, Huertas J I 2021 Int. J. Interact. Des. Manuf. 15 271Google Scholar

    [3]

    Tuchinda C, Srivannaboon S, Lim H W 2006 J. Am. Acad. Dermatol. 54 845Google Scholar

    [4]

    Mousavi N S S, Azzopardi B 2023 Energies 16 5256Google Scholar

    [5]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [6]

    Lin K T, Han J H, Li K, Guo C S, Lin H, Jia B H 2021 Nano Energy 80 105517Google Scholar

    [7]

    Li Z Z, Chen Q Y, Song Y, Zhu B, Zhu J 2020 Adv. Mater. Technol. 5 1901007Google Scholar

    [8]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [9]

    刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波 2017 物理学报 66 248801Google Scholar

    Liu S Y, Yao B, Tan Y S, Xu H T, Ji T, Fang Z B 2017 Acta Phys. Sin. 66 248801Google Scholar

    [10]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [11]

    Cannavale A, Ayr U, Martellotta F 2018 Energy Procedia 148 900Google Scholar

    [12]

    Hemaida A, Ghosh A, Sundaram S, Mallick T K 2020 Sol. Energy 195 185Google Scholar

    [13]

    Jaksic N I, Salahifar C 2003 Sol. Energy Mater. Sol. Cells 79 409Google Scholar

    [14]

    Sun J W, Chen Y N, Liang Z Q 2016 Adv. Funct. Mater. 26 2783Google Scholar

    [15]

    Wu Z X, Zhao Q, Luo X Y, Ma H D, Zheng W Q, Yu J W, Zhang Z L, Zhang K Y, Qu K, Yang R P, Jian N N, Hou J, Liu X M, Xu J K, Lu B Y 2022 Chem. Mater. 34 9923Google Scholar

    [16]

    Ling H, Wu J C, Su F Y, Tian Y Q, Liu Y J 2021 Nat. Commun. 12 1010Google Scholar

    [17]

    Zhang H M, Miao Z C, Shen W B 2022 Composites Part A 163 107234Google Scholar

    [18]

    Lee S J, Song S Y 2023 Energy Build. 298 113514Google Scholar

    [19]

    Casini M 2018 Renewable Energy 119 923Google Scholar

    [20]

    Hakemi H 2017 Liq. Cryst. Today 26 70Google Scholar

  • 图 1  理论模型示意图

    Fig. 1.  Schematic diagram of the theoretical model.

    图 2  PDLC电致变色膜机理图及实物状态变化图

    Fig. 2.  PDLC schematic and physical state change diagram.

    图 3  室内实验装置图 (a) 模型图; (b) 实物图

    Fig. 3.  Indoor experimental setup: (a) Physical model; (b) real setup.

    图 4  室外实验装置 (a) 模型图; (b) 实物图

    Fig. 4.  Outdoor experimental setup: (a) Physical model; (b) real setup.

    图 5  多层膜与单层膜制冷性能对比

    Fig. 5.  Cooling performance between multilayer film and single-layer film.

    图 6  不同电压下多层膜制冷性能

    Fig. 6.  Cooling performance of multilayer film at different voltages.

    图 7  第40 min时热成像仪画面 (a) 未使用多层膜; (b) 使用多层膜

    Fig. 7.  Thermal imaging camera display at 40th minute: (a) Without multilayer film; (b) with multilayer film.

    图 8  夏季实验结果 (a) 2023年7月31日 0 V全雾; (b) 2023年8月1日 30 V 全透

    Fig. 8.  Summer experimental results: (a) July 31st, 2023, 0 V, fully foggy; (b) August 1st, 2023, 30 V, fully clear.

    图 9  秋冬季实验结果 (a) 2023年11月15日 0 V 全雾; (b) 2023年11月29日 30 V 全透

    Fig. 9.  Autumn/Winter experimental results: (a) November 15th, 2023, 0 V, fully foggy (b) November 29th, 2023, 30 V, fully clear.

    图 10  太阳辐射强度及环境温度对制冷性能的影响 (a) 7月31日制冷性能; (b) 11月15日制冷性能

    Fig. 10.  Effects of solar radiation intensity and ambient temperature on the cooling performance: (a) Cooling performance on July 31st; (b) cooling performance on November 15th.

    表 1  辐射制冷膜主要参数

    Table 1.  Main parameters of radiation cooling film.

    参数 百分数/% 参数 百分数/%
    反射率 8 光太阳能
    增益系数
    1.24
    穿透率 66 太阳能总隔断率 47
    紫外线阻隔率 99.9 热增益减少率 28.67
    太阳能辐射
    吸收系数
    0.53 炫光减少率 26
    下载: 导出CSV

    表 2  电致变色膜主要参数

    Table 2.  Main parameters of electrochromic film.

    参数数值参数数值
    穿透率(30 V)%73.5功耗/(W·m²)6
    穿透率(15 V)/%65.5使用寿命/h>50000
    穿透率(0 V)/%10.4工作温度/℃–20—70
    紫外线隔断率/%98可视角度/(°)120
    工作电压/V0—30基材厚度/μm600±50
    下载: 导出CSV
  • [1]

    国家统计局 2023 中国统计年鉴 42 284

    National Bureau of Statistics 2023 China Stat. Yearbook 42 284

    [2]

    Mogro A E, Huertas J I 2021 Int. J. Interact. Des. Manuf. 15 271Google Scholar

    [3]

    Tuchinda C, Srivannaboon S, Lim H W 2006 J. Am. Acad. Dermatol. 54 845Google Scholar

    [4]

    Mousavi N S S, Azzopardi B 2023 Energies 16 5256Google Scholar

    [5]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [6]

    Lin K T, Han J H, Li K, Guo C S, Lin H, Jia B H 2021 Nano Energy 80 105517Google Scholar

    [7]

    Li Z Z, Chen Q Y, Song Y, Zhu B, Zhu J 2020 Adv. Mater. Technol. 5 1901007Google Scholar

    [8]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [9]

    刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波 2017 物理学报 66 248801Google Scholar

    Liu S Y, Yao B, Tan Y S, Xu H T, Ji T, Fang Z B 2017 Acta Phys. Sin. 66 248801Google Scholar

    [10]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [11]

    Cannavale A, Ayr U, Martellotta F 2018 Energy Procedia 148 900Google Scholar

    [12]

    Hemaida A, Ghosh A, Sundaram S, Mallick T K 2020 Sol. Energy 195 185Google Scholar

    [13]

    Jaksic N I, Salahifar C 2003 Sol. Energy Mater. Sol. Cells 79 409Google Scholar

    [14]

    Sun J W, Chen Y N, Liang Z Q 2016 Adv. Funct. Mater. 26 2783Google Scholar

    [15]

    Wu Z X, Zhao Q, Luo X Y, Ma H D, Zheng W Q, Yu J W, Zhang Z L, Zhang K Y, Qu K, Yang R P, Jian N N, Hou J, Liu X M, Xu J K, Lu B Y 2022 Chem. Mater. 34 9923Google Scholar

    [16]

    Ling H, Wu J C, Su F Y, Tian Y Q, Liu Y J 2021 Nat. Commun. 12 1010Google Scholar

    [17]

    Zhang H M, Miao Z C, Shen W B 2022 Composites Part A 163 107234Google Scholar

    [18]

    Lee S J, Song S Y 2023 Energy Build. 298 113514Google Scholar

    [19]

    Casini M 2018 Renewable Energy 119 923Google Scholar

    [20]

    Hakemi H 2017 Liq. Cryst. Today 26 70Google Scholar

  • [1] 江以航, 曹俸华, 栗浩淼, 聂永杰, 李国倡, 魏艳慧, 鲁广昊, 李盛涛, 朱远惟. 等离子体处理构建梯度分布氧空位提升三氧化钨电致变色性能. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241663
    [2] 高建, 李建英. 限域相变对热致变色环氧绝缘材料介电松弛特性的影响. 物理学报, 2023, 72(10): 107701. doi: 10.7498/aps.72.20230253
    [3] 阳润恒, 安顺, 尚文, 邓涛. 仿生辐射制冷的研究进展. 物理学报, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [4] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能. 物理学报, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [5] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. WO3晶体拓扑结构生长行为及其电致变色性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211555
    [6] 陈浩, 王存海, 程子明, 魏琳扬, 王富强, 张欣欣. 基于辐射制冷-温室效应的热电系统性能分析. 物理学报, 2021, 70(21): 214401. doi: 10.7498/aps.70.20210356
    [7] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [8] 方成, 汪洪, 施思齐. 氧化钨电致变色性能的研究进展. 物理学报, 2016, 65(16): 168201. doi: 10.7498/aps.65.168201
    [9] 常松涛, 孙志远, 张尧禹, 朱玮. 制冷型红外成像系统内部杂散辐射测量方法. 物理学报, 2015, 64(5): 050702. doi: 10.7498/aps.64.050702
    [10] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [11] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [12] 于松楠, 吴汉华, 陈根余, 袁鑫, 李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响. 物理学报, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [13] 韩 鹏, 金奎娟, 周岳亮, 周庆莉, 王 旭, 赵嵩卿, 马中水. GaAs/Ga1-xAlxAs半导体量子阱光辐射-热离子制冷. 物理学报, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [14] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [15] 代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈 冲. 非晶态WO3薄膜电致变色特性的研究. 物理学报, 2003, 52(4): 1003-1008. doi: 10.7498/aps.52.1003
    [16] 孙可煦, 黄天晅, 丁永坤, 易荣清, 江少恩, 崔延莉, 汤晓青, 陈久森, 张保汉, 郑志坚. 黑腔靶辐射温度实验研究. 物理学报, 2002, 51(8): 1750-1754. doi: 10.7498/aps.51.1750
    [17] 刘鹏, 姚熹. La调节Pb(Zr,Sn,Ti)O_3反铁电陶瓷的相变与电学性质. 物理学报, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [18] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究. 物理学报, 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
    [19] 崔敬忠, 达道安, 姜万顺. VO2热致变色薄膜的结构和光电特性研究. 物理学报, 1998, 47(3): 454-460. doi: 10.7498/aps.47.454
    [20] 易荣清, 缪文勇, 孙可煦, 崔延莉, 郑志坚, 唐道源. 腔内辐射温度的实验研究. 物理学报, 1996, 45(3): 443-448. doi: 10.7498/aps.45.443
计量
  • 文章访问数:  2092
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-22
  • 修回日期:  2024-07-24
  • 上网日期:  2024-09-19
  • 刊出日期:  2024-11-05

/

返回文章
返回