搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼无人机载差分光学吸收二维探测系统的研究及应用

叶凡 李素文 牟福生 王松 王志多 汤玉洁 雒静

引用本文:
Citation:

旋翼无人机载差分光学吸收二维探测系统的研究及应用

叶凡, 李素文, 牟福生, 王松, 王志多, 汤玉洁, 雒静
cstr: 32037.14.aps.73.20240909

Research and application of differential optical absorption two-dimensional detection system for rotorcraft unmanned aerial vehicle

Ye Fan, Li Su-Wen, Mou Fu-Sheng, Wang Song, Wang Zhi-Duo, Tang Yu-Jie, Luo Jing
cstr: 32037.14.aps.73.20240909
PDF
HTML
导出引用
  • 针对机载探测系统的小型化、多角度、多高度、快速同时获取大气多污染物的技术需求, 研制了一套融合多传感实现不同高度和不同方位角的轻量化、低成本的小型差分光学吸收二维机载观测系统, 并将其搭建于旋翼无人机平台上应用于大气环境污染物的观测. 本文详细介绍了研制的旋翼无人机平台和机载差分光学吸收系统构成, 开展了系统稳定性研究, 机载设备偏航角、翻滚角以及俯仰角的角度偏差均值分别为0.07°, –0.13°, –0.12°, 满足监测稳定性要求. 将机载系统与商用地基差分光学吸收系统进行比对观测实验, 比对结果显示二者监测数据相关系数均大于0.92. 最后利用该机载系统开展外场飞行实验, 机载差分系统分别飞行距离水平面至30, 60, 90 m高度进行观测, 观测时仰角设置为0°, 方位角从0°到360°每隔30°进行一次测量, 获得了不同方位角以及不同高度下的NO2, SO2, HCHO浓度分布信息. 研究结果表明该研发系统满足大气多污染物同时快速多角度多高度的探测技术需求.
    In order to meet the technical requirements for miniaturization, multi-angle, multi-altitude, and fast simultaneous acquisition of atmospheric pollutants, this study develops an integrated, lightweight, and cost-effective airborne differential optical absorption spectroscopy (DOAS) system. This system is designed in order to be used on a rotorcraft unmanned aerial vehicle (UAV) platform for monitoring atmospheric pollutants. The compositions of the hexacopter UAV platform and the airborne DOAS system are detailed in this work. The system includes a multi axis differential optical absorption spectroscopy (MAX-DOAS) spectral acquisition system, a control system, and a flight environment monitoring system. Commands are sent from a computer via serial communication to drive a gimbal, controlling the azimuth angle and elevation angle of the telescope, with a camera recording the light obstruction. The sunlight scattered by the atmosphere is collected by the telescope and transmitted via fiber optics to the spectrometer, which then transmits the data to the control computer. Additionally, the system captures data of altitude, temperature, humidity, and GPS location during flight, and filters out spectral data obtained under abnormal flight conditions. Stability studies indicate that the mean angular deviations for yaw, roll, and pitch are 0.07°, –0.13°, and –0.12° respectively, which meet the requirements for monitoring stability. Comparative experiments with a commercial ground-based DOAS system show that the correlation coefficients between the monitoring data of both systems are both greater than 0.92, confirming the reliability of the airborne system. In field flight experiments, the airborne DOAS system conducts observations at altitudes of 30 m, 60 m, and 90 m, with the elevation angle set at 0° and the azimuth angle measured every 30° from 0° to 360°. The system successfully obtains the concentration distributions of NO2, SO2, and HCHO at different azimuth angles and altitudes. The results indicate that the concentrations of these three gases decrease with altitude increasing, with higher concentrations observed in the southeast direction, indicating the presence of pollution sources in that direction. Further analysis with considering altitude changes indicates that the rate of decrease in NO2 concentration and SO2 concentration slow down with altitude increasing, while the rate of decrease in HCHO remains relatively constant. These findings indicate that this system effectively meets the technical requirements for simultaneous, rapid, multi-angle, and multi-altitude detection of atmospheric pollutants, providing essential support for the detailed monitoring of complex urban micro-environments.
      通信作者: 李素文, swli@chnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41875040)、安徽省高等学校创新团队项目(批准号: 2023AH010043)、安徽省自然科学研究基金(批准号: 2208085QF215)和安徽省高校自然科学研究(批准号: 2023AH050338)资助的课题.
      Corresponding author: Li Su-Wen, swli@chnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41875040), the Innovation Team Project of Anhui Educational Committee, China (Grant No. 2023AH010043), the Natural Science Foundation of Anhui Province, China (Grant No. 2208085QF215), and the Natural Science Research Project of Anhui Educational Committee, China (Grant No. 2023AH050338).
    [1]

    Su W J, Liu C, Chan K L, Hu Q H, Liu H, Ji X G, Zhu Y Z, Liu T, Zhang C X, Chen Y J, Liu J G 2020 Atmos. Meas. Tech. 13 6271Google Scholar

    [2]

    Wu S S, Huang B, Wang J H, He L J, Wang Z Y, Yan Z, Lao X Q, Zhang F, Liu R Y, Du Z H 2021 Environ. Pollut. 273 116456Google Scholar

    [3]

    徐晋, 谢品华, 司福祺, 李昂, 刘文清 2012 物理学报 61 282Google Scholar

    Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 282Google Scholar

    [4]

    梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国 2017 物理学报 66 090704Google Scholar

    Liang S X, Qin M, Duan J, Fang W, Li A, Xu J, Lu X, Tang K, Xie P H, Liu J G 2017 Acta Phys. Sin. 66 090704Google Scholar

    [5]

    Zhang H K, Huang B, Zhang M, Cao K, Yu L 2015 Int. J. Remote Sens. 36 4411Google Scholar

    [6]

    Liu M X, Liu X N, Wu L, Zou X Y, Jiang T, Zhao B Y 2018 Remote Sens. 10 772Google Scholar

    [7]

    Zhou B, Zhang S B, Xue R B, Li J Y, Wang S S 2023 J. Environ. Sci. 123 3Google Scholar

    [8]

    Pang X B, Chen L, Shi K L, Wu F, Chen J M, Fang S X, Wang J L, Xu M 2021 Sci. Total Environ. 764 142828Google Scholar

    [9]

    Wu C, Liu B, Wu D, Yang H L, Mao X, Tan J, Liang Y, Sun J Y, Xia R, Sun J R, He G W, Li M, Deng T, Zhou Z, Li Y J 2021 Sci. Total Environ. 801 149689Google Scholar

    [10]

    Li X M, Xie P H, Li A, Xu J, Ren H M, Ren B, Li Y Y, Li J 2021 J. Environ. Sci. 107 1Google Scholar

    [11]

    Arroyo P, Gómez-Suárez J, Herrero J L, Lozano J 2022 Sens. Actuators B Chem. 364 131815Google Scholar

    [12]

    Platt U, Stutz J, Platt U, Stutz J 2008 Differential Absorption Spectroscopy (Berlin Heidelberg: Springer) pp135–174

    [13]

    Liu C, Xing C Z, Hu Q H, Wang S S, Zhao S H, Gao M 2022 Earth Sci. Rev. 226 103958Google Scholar

    [14]

    Chen X, Chen Y P, Chen Y X, Fang Y X, Yu J X, Sun Y 2023 IEEE International Geoscience and Remote Sensing Symposium United States of America, July 16–21, 2023 p3866

    [15]

    Xing C Z, Liu C, Li Q H, Wang S S, Tan W, Zou T L, Wang Z, Lu C 2024 Sci. Total Environ. 915 169159Google Scholar

    [16]

    Li L, Lu C, Chan P W, Zhang X, Yang H L, Lan Z J, Zhang W H, Liu Y W, Pan L, Zhang L 2020 Atmos. Environ. 220 117083Google Scholar

    [17]

    Mo Z W, Huang S, Yuan B, Pei C L, Song Q C, Qi J P, Wang M, Wang B L, Wang C, Shao M 2022 Environ. Pollut. 292 118454Google Scholar

    [18]

    Chen L, Pang X B, Li J J, Xing B, An T C, Yuan K B, Dai S, Wu Z T, Wang S Q, Wang Q, Mao Y P, Chen J M 2022 Sci. Total Environ. 845 157113Google Scholar

    [19]

    Zheng Z L, Wang H C, Chen X R, Wang J, Li X, Lu K D, Yu G H, Huang X F, Fan S J 2024 Atmos. Environ. 321 120361Google Scholar

    [20]

    Hedworth H, Page J, Sohl J, Saad T 2022 Drones 6 253Google Scholar

    [21]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 物理学报 64 34217Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Acta Phys. Sin. 64 34217Google Scholar

    [22]

    Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar

    [23]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Radiat. Transf. 59 171Google Scholar

    [24]

    Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J, Burrows J P 2003 J. Photoch. Photobio. A 157 167Google Scholar

    [25]

    Meller R, Moortgat G K 2000 J. Geophys. Res 105 7089Google Scholar

    [26]

    Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar

    [27]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [28]

    Fleischmann O C, Hartmann M, Burrows J P, Orphal J 2004 J. Photochem. Photobiol. A Chem. 168 117Google Scholar

  • 图 1  旋翼无人机平台实物图

    Fig. 1.  Photograph of the rotorcraft unmanned aerial vehicle platform.

    图 2  机载差分光学吸收二维系统结构示意图

    Fig. 2.  Schematic diagram of the airborne differential optical absorption 2D system.

    图 3  旋翼无人机载差分光学吸收二维探测系统实物图

    Fig. 3.  Photograph of the differential optical absorption 2D detection System mounted on a rotorcraft unmanned aerial vehicle.

    图 4  机载系统3种飞行姿态的角度偏差图 (a) 500 ms采样数据; (b)固定间隔采样数据

    Fig. 4.  Angle deviation diagram of the three flight attitudes of the airborne system: (a) 500 ms sampled data; (b) data sampled at fixed intervals.

    图 5  机载系统与商用地基MAX-DOAS观测的NO2差分斜柱浓度时间序列对比图 (a)仰角为1°; (b)仰角为2°; (c)仰角为5°; (d)仰角为6°; (e)仰角为8°; (f)仰角为15°

    Fig. 5.  Comparison of NO2 differential slant column density time series observed by airborne system and commercial ground-based MAX-DOAS: (a) Elevation angle of 1°; (b) elevation angle of 2°; (c) elevation angle of 5°; (d) elevation angle of 6°; (e) elevation angle of 8°; (f) elevation angle of 15°.

    图 6  机载系统与商用地基MAX-DOAS观测的NO2差分斜柱浓度的对比相关图 (a)仰角为1°; (b)仰角为2°; (c)仰角为5°; (d)仰角为6°; (e)仰角为8°; (f)仰角为15°

    Fig. 6.  Comparison correlation plot of NO2 differential slant column density observed by airborne system and commercial ground-based MAX-DOAS: (a) Elevation angle of 1°; (b) elevation angle of 2°; (c) elevation angle of 5°; (d) elevation angle of 6°; (e) elevation angle of 8°; (f) elevation angle of 15°.

    图 7  无人机外场实验 (a)测量地点; (b)实景图

    Fig. 7.  UAV field experiment: (a) Measurement site; (b) real-world image.

    图 8  无人机测量方式图

    Fig. 8.  Diagram of UAV measurement method.

    图 9  NO2, SO2, HCHO光谱拟合效果实例 (a) NO2光谱拟合; (b) NO2斜柱浓度拟合残差; (c) SO2光谱拟合; (d) SO2斜柱浓度拟合残差; (e) HCHO光谱拟合; (f) HCHO斜柱浓度拟合残差

    Fig. 9.  Examples of spectral fitting results for NO2, SO2 and HCHO: (a) NO2 spectral fitting; (b) fitting residuals of NO2 slant column density; (c) SO2 spectral fitting; (d) fitting residuals of SO2 slant column density; (e) HCHO spectral fitting; (f) fitting residuals of HCHO slant column density.

    图 10  水平观测下不同高度的NO2浓度分布图 (a)高度为30 m; (b)高度为60 m; (c)高度为90 m

    Fig. 10.  Distribution of NO2 concentration at different heights under horizontal observation: (a) Height of 30 m; (b) height of 60 m; (c) height of 90 m

    图 12  水平观测下不同高度的HCHO浓度分布图 (a)高度为30 m; (b)高度为60 m; (c)高度为90 m

    Fig. 12.  Distribution of HCHO concentration at different heights under horizontal observation: (a) Height of 30 m; (b) height of 60 m; (c) height of 90 m.

    图 13  观测期间0°方位角下不同高度的NO2, SO2, HCHO浓度变化图 (a) NO2; (b) SO2; (c) HCHO

    Fig. 13.  Variation of NO2, SO2, HCHO concentrations at different heights under 0° azimuth during the observation period: (a) NO2; (b) SO2; (c) HCHO.

    图 11  水平观测下不同高度的SO2浓度分布图 (a)高度为30 m; (b)高度为60 m; (c)高度为90 m

    Fig. 11.  Distribution of SO2 concentration at different heights under horizontal observation: (a) Height of 30 m; (b) height of 60 m; (c) height of 90 m.

    表 1  具体实验拟合参数

    Table 1.  Specific parameters of experimental fitting.

    ParameterNO2SO2HCHO
    Fitting wavelength/nm337—370309—323324—342
    Polynomial degree555
    Intensity offsetConstantConstantConstant
    NO2220 K, 294 K[23]294 K[23]294 K[23]
    SO2293 K[24]
    HCHO297 K[25]297 K[25]
    O3223 K, 243 K[26]223 K, 243 K[26]223 K, 243 K[26]
    O4293 K[27]293 K[27]
    Bro223 K[28]
    RingCalculated with FRSCalculated with FRSCalculated with FRS
    下载: 导出CSV
  • [1]

    Su W J, Liu C, Chan K L, Hu Q H, Liu H, Ji X G, Zhu Y Z, Liu T, Zhang C X, Chen Y J, Liu J G 2020 Atmos. Meas. Tech. 13 6271Google Scholar

    [2]

    Wu S S, Huang B, Wang J H, He L J, Wang Z Y, Yan Z, Lao X Q, Zhang F, Liu R Y, Du Z H 2021 Environ. Pollut. 273 116456Google Scholar

    [3]

    徐晋, 谢品华, 司福祺, 李昂, 刘文清 2012 物理学报 61 282Google Scholar

    Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 282Google Scholar

    [4]

    梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国 2017 物理学报 66 090704Google Scholar

    Liang S X, Qin M, Duan J, Fang W, Li A, Xu J, Lu X, Tang K, Xie P H, Liu J G 2017 Acta Phys. Sin. 66 090704Google Scholar

    [5]

    Zhang H K, Huang B, Zhang M, Cao K, Yu L 2015 Int. J. Remote Sens. 36 4411Google Scholar

    [6]

    Liu M X, Liu X N, Wu L, Zou X Y, Jiang T, Zhao B Y 2018 Remote Sens. 10 772Google Scholar

    [7]

    Zhou B, Zhang S B, Xue R B, Li J Y, Wang S S 2023 J. Environ. Sci. 123 3Google Scholar

    [8]

    Pang X B, Chen L, Shi K L, Wu F, Chen J M, Fang S X, Wang J L, Xu M 2021 Sci. Total Environ. 764 142828Google Scholar

    [9]

    Wu C, Liu B, Wu D, Yang H L, Mao X, Tan J, Liang Y, Sun J Y, Xia R, Sun J R, He G W, Li M, Deng T, Zhou Z, Li Y J 2021 Sci. Total Environ. 801 149689Google Scholar

    [10]

    Li X M, Xie P H, Li A, Xu J, Ren H M, Ren B, Li Y Y, Li J 2021 J. Environ. Sci. 107 1Google Scholar

    [11]

    Arroyo P, Gómez-Suárez J, Herrero J L, Lozano J 2022 Sens. Actuators B Chem. 364 131815Google Scholar

    [12]

    Platt U, Stutz J, Platt U, Stutz J 2008 Differential Absorption Spectroscopy (Berlin Heidelberg: Springer) pp135–174

    [13]

    Liu C, Xing C Z, Hu Q H, Wang S S, Zhao S H, Gao M 2022 Earth Sci. Rev. 226 103958Google Scholar

    [14]

    Chen X, Chen Y P, Chen Y X, Fang Y X, Yu J X, Sun Y 2023 IEEE International Geoscience and Remote Sensing Symposium United States of America, July 16–21, 2023 p3866

    [15]

    Xing C Z, Liu C, Li Q H, Wang S S, Tan W, Zou T L, Wang Z, Lu C 2024 Sci. Total Environ. 915 169159Google Scholar

    [16]

    Li L, Lu C, Chan P W, Zhang X, Yang H L, Lan Z J, Zhang W H, Liu Y W, Pan L, Zhang L 2020 Atmos. Environ. 220 117083Google Scholar

    [17]

    Mo Z W, Huang S, Yuan B, Pei C L, Song Q C, Qi J P, Wang M, Wang B L, Wang C, Shao M 2022 Environ. Pollut. 292 118454Google Scholar

    [18]

    Chen L, Pang X B, Li J J, Xing B, An T C, Yuan K B, Dai S, Wu Z T, Wang S Q, Wang Q, Mao Y P, Chen J M 2022 Sci. Total Environ. 845 157113Google Scholar

    [19]

    Zheng Z L, Wang H C, Chen X R, Wang J, Li X, Lu K D, Yu G H, Huang X F, Fan S J 2024 Atmos. Environ. 321 120361Google Scholar

    [20]

    Hedworth H, Page J, Sohl J, Saad T 2022 Drones 6 253Google Scholar

    [21]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 物理学报 64 34217Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Acta Phys. Sin. 64 34217Google Scholar

    [22]

    Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar

    [23]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Radiat. Transf. 59 171Google Scholar

    [24]

    Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J, Burrows J P 2003 J. Photoch. Photobio. A 157 167Google Scholar

    [25]

    Meller R, Moortgat G K 2000 J. Geophys. Res 105 7089Google Scholar

    [26]

    Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar

    [27]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [28]

    Fleischmann O C, Hartmann M, Burrows J P, Orphal J 2004 J. Photochem. Photobiol. A Chem. 168 117Google Scholar

  • [1] 王柯俭, 滕浩, 邢笑伟, 董朔, 曹凯强, 江昱佼, 赵昆, 朱江峰, 刘文军, 魏志义. 长距离泵浦-探测系统的阿秒精度锁定. 物理学报, 2024, 73(19): 194201. doi: 10.7498/aps.73.20241061
    [2] 胡晨阳, 梁家洛, 郑日翌, 陆久阳, 邓伟胤, 黄学勤, 刘正猷. 一维合成维度水基声子晶体. 物理学报, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [3] 陈思, 张海洋, 靳发宏, 汪林, 赵长明. 运动目标的多维度微运动特征提取研究. 物理学报, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [4] 王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园. 基于图卷积神经网络的多维度节点重要性评估方法. 物理学报, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [5] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [6] 朱雨雯, 袁丛龙, 刘炳辉, 王骁乾, 郑致刚. 基于LCP /TLC的复合多维偏振型防伪器件. 物理学报, 2023, 72(17): 174206. doi: 10.7498/aps.72.20230850
    [7] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [8] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211121
    [9] 张大军. 离散可积系统: 多维相容性. 物理学报, 2020, 69(1): 010202. doi: 10.7498/aps.69.20191647
    [10] 查冰婷, 袁海璐, 马少杰, 陈光宋. 单光束扩束扫描激光周视探测系统参数对探测能力的影响. 物理学报, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [11] 王明军, 魏亚飞, 柯熙政. 复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究. 物理学报, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [12] 寇添, 于雷, 周中良, 王海晏, 阮铖巍, 刘宏强. 机载光电系统探测空中机动目标的光谱辐射特征研究. 物理学报, 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [13] 王盼盼, 周晨, 宋杨, 张援农, 赵正予. 大气风场和温度对无线电声波探测系统探测高度影响的数值研究. 物理学报, 2015, 64(10): 100205. doi: 10.7498/aps.64.100205
    [14] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究. 物理学报, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [15] 朱国梁, 胡仁志, 谢品华, 陈浩, 秦敏, 方武, 王丹, 杏兴彪. 基于差分光学吸收光谱方法的OH自由基定标系统研究. 物理学报, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [16] 茹常剑, 魏瑞轩, 沈东. 多无人机协同的稳定控制机理研究. 物理学报, 2014, 63(22): 220202. doi: 10.7498/aps.63.220202
    [17] 徐宁, 陈雪莲, 杨庚. 基于改进后多维数据加密系统的多图像光学加密算法的研究. 物理学报, 2013, 62(8): 084202. doi: 10.7498/aps.62.084202
    [18] 王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明. 基于石英音叉增强型光谱技术(QEPAS)的实时探测系统研究. 物理学报, 2012, 61(12): 120701. doi: 10.7498/aps.61.120701
    [19] 欧阳晓平, 李真富, 王群书, 霍裕昆, 马彦良, 张前美, 张国光, 金玉仁. 狭缝式高灵敏裂变中子探测系统. 物理学报, 2005, 54(10): 4643-4647. doi: 10.7498/aps.54.4643
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  1127
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2024-08-15
  • 上网日期:  2024-08-20
  • 刊出日期:  2024-09-20

/

返回文章
返回