搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土掺杂硼团簇$ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) 的几何及电子结构

陈子俊 李慧芳 谢圳明 张勇航 郑浩 姜凯乐 张博 张家铭 王怀谦

引用本文:
Citation:

稀土掺杂硼团簇$ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) 的几何及电子结构

陈子俊, 李慧芳, 谢圳明, 张勇航, 郑浩, 姜凯乐, 张博, 张家铭, 王怀谦

Geometry and electronic structures of rare earth-doped boron-based clusters $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8)

Chen Zi-Jun, Li Hui-Fang, Xie Zhen-Ming, Zhang Yong-Hang, Zheng Hao, Jiang Kai-Le, Zhang Bo, Zhang Jia-Ming, Wang Huai-Qian
PDF
HTML
导出引用
  • 稀土掺杂硼团簇因其特殊的光学, 电学和磁学性质受到广泛关注. 本文采用人工蜂群算法结合密度泛函理论, 在PBE0/RE/SDD//B/6-311+G*水平下研究了稀土掺杂阴离子硼团簇$ {\text{REB}}_n^ - $(RE = La, Sc; n = 6, 8) 的几何结构、电子性质、稳定性和芳香性. 计算结果表明, 阴离子$ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6) 的基态结构具有C2对称性, 掺杂的镧系原子位于顶部中心形成“船形”结构. 通过与实验光电子能谱的比较, 证实$ {\text{LaB}}_{8}^ - $ 的基态结构类似于三维的“筝形”结构, 而$ {\text{ScB}}_{8}^ - $ 的基态结构则是Sc原子位于“伞柄”处形成的具有C7V对称性的“伞状”结构. B—B之间存在通过共享电子对的相互作用, 而RE-B之间的电子定域性不如B—B之间的电子定域性. 模拟得出的光电子能谱峰值位置与实验结果的吻合度较高, 充分证实了研究获取的全局能量最低结构与实验观测结构的一致性. $ {\text{LaB}}_{6}^ - $$ {\text{ScB}}_{6}^ - $ 的最低能量结构均为σ-π双芳香簇, 表现出明显的芳香性. 此外, 分别计算了$ {\text{REB}}_n^ - $(RE = La, Sc; n = 6, 8)的总态密度, 以及RE原子和硼簇的局部态密度, 并对其轨道能级密度进行了评估. 开壳层的$ {\text{ScB}}_{8}^ - $态密度谱呈现出自旋极化现象, 这表明其作为基元可以组装成具有磁性的纳米材料. 这些对稀土掺杂硼团簇的研究有助于深入理解纳米材料的结构和性质演变规律, 为设计具有实际价值的纳米材料提供了重要的理论支持.
    Rare earth doped boron clusters have attracted much attention due to their special optical, electrical and magnetic properties. The geometric structures, stability, electronic properties and aromaticity of negative rare earth doped boron clusters $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) are investigated with the artificial bee colony algorithm combined with density functional theory calculations at the PBE0/RE/SDD//B/6-311+G* level of theory. Calculations show that the ground state structures of $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) are all of C2 symmetry, and the doped lanthanide atom is located in a “boat-shaped” structure at the top center. By comparing with the experimental photoelectron spectra, it is confirmed that the ground state structure of $ {\text{LaB}}_{8}^ - $ is a “zither-like” three-dimensional structure, and the ground state structure of $ {\text{ScB}}_{8}^ - $ is an “umbrella” structure with C7V symmetry formed by the scandium atom at the “umbrella handle”. The electron localization between RE-B is not as good as that between B—B. The simulated photoelectron spectra have similar spectral characteristics to the experimental results. The lowest energy structures of $ {\text{LaB}}_{6}^ - $ and $ {\text{ScB}}_{6}^ - $ are σ-π double aromatic clusters, and the structures exhibit aromaticity. The density of states of low-energy isomers shows that the open shell $ {\text{ScB}}_{8}^ - $ density of states spectrum exhibits spin polarization phenomenon, which is expected to assemble magnetic material components. These studies contribute to understanding the evolution of structure and properties of nanomaterials, and provide important theoretical support for designing nanomaterials with practical value.
  • 图 1  在PBE0/RE/SDD//B/6-311+G*理论水平下, $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) 团簇低能异构体的结构、点群对称性、相对能

    Fig. 1.  Structures, symmetry point group and relative energy (eV) of the lower-lying isomers for $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) clusters at the PBE0/RE/SDD//B/6-311+G* level of theory.

    图 2  $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8)团簇低能异构体的定域化轨道指示函数等值面图

    Fig. 2.  $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) isosurface of localized orbital locator function of low energy isomers.

    图 3  $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8)团簇低能异构体的模拟光电子能谱图, $ {\text{LaB}}_{8}^ - $的实验光电子能谱来自于文献[32], 共同绘制在$ {\text{LaB}}_{8}^ - $-Ⅰ处用红色曲线表示

    Fig. 3.  Simulated PES spectra for low-lying isomers of $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) clusters, the experimental PES spectra of the anionic ground state structure of $ {\text{LaB}}_{8}^ - $ was obtained from Ref. [32].

    图 4  $ {\text{LaB}}_{6}^ - $的芳香性分析图

    Fig. 4.  Adaptive natural density partitioning (AdNDP) bonding analyses of $ {\text{LaB}}_{6}^ - $.

    图 5  $ {\text{ScB}}_{6}^ - $-Ⅰ的芳香性分析轨道图

    Fig. 5.  Adaptive natural density partitioning (AdNDP) bonding analyses of $ {\text{ScB}}_{6}^ - $-Ⅰ.

    图 6  $ {\text{ScB}}_{6}^ - $-Ⅲ的芳香性分析图

    Fig. 6.  Adaptive natural density partitioning (AdNDP) bonding analyses of $ {\text{ScB}}_{6}^ - $-Ⅲ.

    图 7  0.60 eV的半峰展宽下$ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) 能量最低结构的总态密度图与局部态密度图

    Fig. 7.  Total density of states (TDOS) and partial density of states (PDOS) plot of the lowest energy structures of $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) with a full width at half-maximum (FWHM) of 0.60 eV.

  • [1]

    张超江, 许洪光, 徐西玲, 郑卫军 2021 物理学报 70 023601Google Scholar

    Zhang C J, Xu H G, Xu X L, Zheng W J 2021 Acta Phys. Sin. 70 023601Google Scholar

    [2]

    Boustani I 1997 Phys. Rev. B 5 16426

    [3]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. 102 961Google Scholar

    [4]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 6 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 6 103102Google Scholar

    [5]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349Google Scholar

    [6]

    Jian T, Chen X, Li S D, Boldyrev A I, Li J, Wang L S 2019 Chem. Soc. Rev. 48 3550Google Scholar

    [7]

    Wang L S 2016 Int. Rev. Phys. Chem. 35 69Google Scholar

    [8]

    Bai H, Chen T T, Chen Q, Zhao X Y, Zhang Y Y, Chen W J, Li W L, Cheng L F, Bai B, Cavanagh J, Huang W, Li S D, Li J, Wang L S 2019 Nanoscale 11 23286Google Scholar

    [9]

    刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 物理学报 58 5355Google Scholar

    Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355Google Scholar

    [10]

    Pham H T, Duong L V, Pham B Q, Nguyen M T 2013 Chem. Phys. Lett. 577 32Google Scholar

    [11]

    Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004Google Scholar

    [12]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nature Chem. 6 727Google Scholar

    [13]

    Islas R, Heine T, Ito K, Schleyer P V, Merino G 2007 J. Am. Chem. Soc. 129 14767Google Scholar

    [14]

    Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2013 Acc. Chem. Res. 46 350Google Scholar

    [15]

    Saha R, Kar S, Pan S, Martínez-Guajardo G, Merino G, Chattaraj P K 2017 J. Phys. Chem. A 121 2971Google Scholar

    [16]

    李世雄, 陈德良, 张正平, 隆正文 2020 物理学报 69 193101Google Scholar

    Li S X, Chen D L, Zhang Z P, Long Z W 2020 Acta Phys. Sin. 69 193101Google Scholar

    [17]

    Li H F, Wang H Q, Zhang J M, Qin L X, Zheng H, Zhang Y H 2024 Molecules 29 1692Google Scholar

    [18]

    蒋贤明, 王怀谦, 曹宇, 孙之惠, 曹玉芳, 吴伟宾 2018 高等学校化学学报 39 1976Google Scholar

    Jiang X M, Wang H Q, Cao Y, Sun Z H, Cao Y F, Wu W B 2018 Chemical Journal of Chinese Universities 39 1976Google Scholar

    [19]

    Zheng H, Wang H Q, Li H F, Zhang J M, Zhang Y H, Qin L X, Mei X J, Jiang K L, Zeng J K, Zhang B, Wu W H 2024 Chem. Phys. 583 112321Google Scholar

    [20]

    Wen S H, Zhou J J, Zheng K Z, Bednarkiewicz A, Liu X G, Jin D Y 2018 Nat. Commun. 9 2415Google Scholar

    [21]

    Jiang L Y, Wang H Q, Li H F, Xie B, Zhang J M, Ji J Y 2023 Chem. Phys. 567 111819Google Scholar

    [22]

    Wang H Q, Li H F 2014 RSC Adv. 4 29782Google Scholar

    [23]

    Yi Z G, Luo Z C, Qin X, Chen Q S, Liu X G 2020 Acc. Chem. Res. 53 2692Google Scholar

    [24]

    Qin L X, Li H F, Xiao B W, Zhang J M, Zeng J K, Mei X J, Zhang Y H, Zheng H, Wang H Q 2023 Chem. Phys. 575 112064Google Scholar

    [25]

    Li W L, Chen T T, Xing D H, Chen X, Li J, Wang L S 2018 Proc. Natl. Acad. Sci. 115 E6972

    [26]

    Robinson P J, Zhang X X, McQueen T, Bowen K H, Alexandrova A N 2017 J. Phys. Chem. A 121 1849Google Scholar

    [27]

    Chen T T, Li W L, Li J, Wang L S 2019 Chem. Sci. 10 2534Google Scholar

    [28]

    Zuo J N, Zhang L L, Chen B L, He K H, Dai W, Ding K W, Lu C 2024 J. Phys. Condens. Matter 36 015302Google Scholar

    [29]

    Xiang Z Y, Luo Z J, Bi J, Jin S Y, Zhang Z Q, Lu C 2022 J. Phys. Condens. Matter 34 445302Google Scholar

    [30]

    Jin S Y, Sun W G, Chen B L, Kuang X Y, Lu H Y, Lu C 2021 J. Phys. Chem. A 125 4126Google Scholar

    [31]

    Lu C, Gong W, Li Q, Chen C 2020 J. Phys. Chem. Lett. 11 9165Google Scholar

    [32]

    Li W L, Chen T T, Chen W J, Li J, Wang L S, 2021 Nat. Commun. 12 6467Google Scholar

    [33]

    Zhang J, Dolg M 2015 Phys. Chem. Chem. Phys. 17 24173Google Scholar

    [34]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 09 (Revision Ed. 01) (Wallingford, CT: Gaussian, Inc.

    [35]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33Google Scholar

    [37]

    Dolg M, Stoll H, Savin A, Preuss H 1989 Theor. Chim. Acta. 75 173Google Scholar

    [38]

    Peterson A, Kirk F, Detlev G, Erich S H, Michael D 2003 J. Chem. Phys. 119 11113Google Scholar

    [39]

    Binkley, Stephen J, Pople, John A, Hehre, Warren J 1980 J. Am. Chem. Soc. 102 939Google Scholar

    [40]

    Adamo C, Barone V 1999 J. Chem. Phys. 110 6158Google Scholar

    [41]

    Wadt W R, Hay P J 1985 J. Chem. Phys. 82 284Google Scholar

    [42]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1980 J. Chem. Phys. 72 650Google Scholar

    [43]

    Tozer D J, Handy N C 1998 J. Chem. Phys. 109 10180Google Scholar

    [44]

    Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S, Steiner E, Fowler P W 2003 J. Phys. Chem. A 107 1362

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, doi: 10.7498/aps.68.20182230
    [2] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.67.20172662
    [3] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, doi: 10.7498/aps.65.048101
    [4] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, doi: 10.7498/aps.64.033101
    [5] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, doi: 10.7498/aps.63.047101
    [6] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.113101
    [7] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.023103
    [8] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.163601
    [9] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.61.153601
    [10] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, doi: 10.7498/aps.61.127201
    [11] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究. 物理学报, doi: 10.7498/aps.61.083601
    [12] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, doi: 10.7498/aps.60.123601
    [13] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, doi: 10.7498/aps.59.7830
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, doi: 10.7498/aps.59.6955
    [15] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, doi: 10.7498/aps.58.1603
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, doi: 10.7498/aps.58.6134
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.57.4866
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, doi: 10.7498/aps.57.4174
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, doi: 10.7498/aps.57.6265
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, doi: 10.7498/aps.55.171
计量
  • 文章访问数:  232
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-08-17
  • 上网日期:  2024-09-04

/

返回文章
返回