搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层SnS场效应晶体管的第一性原理研究

郭颖 潘峰 姚彬彬 孟豪 吕劲

引用本文:
Citation:

单层SnS场效应晶体管的第一性原理研究

郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲
cstr: 32037.14.aps.73.20241004

First principles study of high-performance sub-5-nm monolayer SnS field-effect transistors

Guo Ying, Pan Feng, Yao Bin-Bin, Meng Hao, Lü Jin
cstr: 32037.14.aps.73.20241004
PDF
HTML
导出引用
  • 基于硅基材料的逻辑器件由于其短沟道效应, 使摩尔定律失效, 二维半导体材料被认为是继续缩小晶体管尺寸以生产更多摩尔电子器件的潜在沟道材料. 最近在实验上突破了技术瓶颈的限制, 实现了二维场效应晶体管突破亚1 nm沟道极限, 并且表现出优异的器件性能. 这极大地鼓舞了在理论上进一步探索二维器件的性能. 二维SnS具有较高的载流子迁移率和各向异性的电子性能, 且材料性能环境稳定. 本文应用第一性原理研究了亚5 nm SnS 场效应晶体管的量子输运特性, 鉴于SnS的各向异性, 本文将器件沿单层SnS的armchair和zigzag两个方向进行构造, 发现p型zigzag方向的器件性能优于其他类型(包括n型、p型的armchair方向和n型的zigzag方向). p型zigzag方向器件的开态电流在栅长缩短到1 nm也能满足国际半导体技术路线图的高性能(HP)器件要求, 其值高达1934 μA/μm. 这在目前报道的1 nm栅长上的器件材料性能方面处于领先.
    Currently, Si-based field-effect transistors (FET) are approaching their physical limit and challenging Moore's law due to their short-channel effect, and further reducing their gate length to the sub-10 nm is extremely difficult. Two-dimensional (2D) layered semiconductors with atom-scale uniform thickness and no dangling bonds on the interface are considered potential channel materials to support further miniaturization and integrated electronics. Wu et al. [Wu F, et al. 2022 Nature 603 259] successfully fabricated an FET with gate length less than 1 nm by using atomically thin molybdenum disulfide with excellent device performance. This breakthrough has greatly encouraged further theoretical predictions regarding the performance of 2D devices. Additionally, 2D SnS has high carrier mobility, anisotropic electronic properties, and is stable under ambient condition, which is conducive to advanced applications in 2D semiconductor technology. Herein, we explore the quantum transport properties of sub-5 nm monolayer (ML) SnS FET by using first-principles quantum transport simulation. Considering the anisotropic electronic SnS, the double-gated-two-probe device model is constructed along the armchair direction and the zigzag direction of ML SnS. After testing five kinds of doping concentrations, a doping concentration of 5×1013 cm–2 is the best one for SnS FET. We also use the underlaps (ULs) with lengths of 0, 2, and 4 nm to improve the device performance. On-state current (Ion) is an important parameter for evaluating the transition speed of a logic device. A higher Ion of a device can help to increase the switching speed of high-performance (HP) servers. The main conclusions are drawn as follows.1) Ion values of the n-type 2 nm (UL = 4 armchair), 3 nm (UL = 2), 4 nm (UL = 3), 5 nm (UL = 0) and the p-type 1 nm (UL = 2 zigzag), 2 nm (UL = 2 zigzag), 3 nm (UL = 2, 4 zigzag), 4 nm (UL = 2, 4 zigzag), and 5 nm (UL = 0, armchair/zigzag) gate-length devices can meet the standards for HP applications in the next decade in the International Technology Roadmap for semiconductors (ITRS, 2013 version).2) Ion values of the n-type device along the armchair direction (31–2369 μA/μm) are larger than those in the zigzag direction (4.04–1943 μA/μm), while Ion values of the p-type along the zigzag direction (545–4119 μA/μm) are larger than those in the armchair direction (0.7–924 μA/μm). Therefore, the p-type ML GeSe MOSFETs have a predominantly anisotropic current.3) Ion value of the p-type 3 nm gate-length (UL = 0) device along the zigzag direction has the highest value 4119 μA/μm, which is 2.93 times larger than that in the same gate-length UL = 2 (1407 μA/μm). Hence, an overlong UL will weaken the performance of the device because the gate of the device cannot well control the UL region. Thus, a suitable length of UL for FET is very important.4) Remarkably, Ion values of the p-type devices (zigzag), even with a gate-length of 1 nm, can meet the requirements of HP applications in the ITRS for the next decade, with a value as high as 1934 μA/μm. To our knowledge, this is the best-performing device material reported at a gate length of 1 nm.5) Subthreshold swing (SS) evaluates the control ability of the gate in the subthreshold region. The better the gate control, the smaller the SS of the device is. The limit of SS for traditional FET is 60 mV/dec (at room temperature). Values of SS for ML SnS FET alone zigzag direction are less than those along the armchair direction because the leakage current is influenced by the effective mass.
      通信作者: 郭颖, guosophia@163.com ; 吕劲, jinglu@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: Z20230015, 12174238)、陕西省自然科学基础研究计划项目(批准号: 2022JM-051)和陕西理工大学人才引进项目(批准号: SLGRC202401)资助的课题.
      Corresponding author: Guo Ying, guosophia@163.com ; Lü Jin, jinglu@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. Z20230015, 12174238), the Natural Science Basic Research Project of Shaanxi Province, China (Grant No. 2022JM-051), and the Shaanxi University of Technology Talent Introduction Programm, China (Grant No. SLGRC202401).
    [1]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [2]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [3]

    Wang Y Y, Liu S Q, Li Q W, Quhe R, Yang C, Guo Y, Zhang X Y, Pan Y Y, Li J S, Zhang H, Xu L, Shi B W, Tang H, Li Y, Yang J, Zhang Z Y, Xiao L, Pan F, Lu J 2021 Rep. Prog. Phys. 84 056501Google Scholar

    [4]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [5]

    https://irds.ieee.org/editions/2022

    [6]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C H, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [7]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [8]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [9]

    Xin C, Zheng J X, Su Y T, Li S K, Zhang B K, Feng Y C, Pan F 2016 J. Phys. Chem. C 120 22663Google Scholar

    [10]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2022 Adv. Sci. 10 2201842

    [11]

    Li S B, Xiao W J, Pan Y Y, Jie J S, Xin C, Zheng J X, Lu J, Pan F 2018 J. Phys. Chem. C 122 12322

    [12]

    Chang Y R, Nishimura T, Taniguchi T, Watanabe K, Nagashio K 2022 ACS Appl. Mater. Interfaces 14 19928Google Scholar

    [13]

    Sucharitakul S, Rajesh Kumar U, Sankar R, Chou F C, Chen Y T, Wang C H, He C, He R, Gao X P 2016 Nanoscale 8 19050Google Scholar

    [14]

    Dragoman M, Dinescu A, Avram A, Dragoman D, Vulpe S, Aldrigo M, Braniste T, Suman V, Rusu E, Tiginyanu I 2022 Nanotechnology 33 405207Google Scholar

    [15]

    Pandit A, Hamad B 2021 Appl. Surface Sci. 538 147911Google Scholar

    [16]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434Google Scholar

    [17]

    Zhao P D, Kiriya D, Azcatl A, Zhang C X, Tosun M, Liu Y S, Hettick M, Kang J S, McDonnell S, KC S, Guo J H, Cho K, Wallace R M, Javey A 2014 ACS Nano 8 10808Google Scholar

    [18]

    Fathipour S, Pandey P, Fullerton-Shirey S, Seabaugh A 2016 J. Appl. Phys. 120 234902Google Scholar

    [19]

    Quhe R, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [20]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100Google Scholar

    [21]

    Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M, Lodha S 2014 Appl. Phys. Lett. 105 113505Google Scholar

    [22]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [23]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [24]

    Pan Y Y, Wang Y Y, Ye M, Quhe R, Zhong H X, Song Z G, Peng X Y, Yu D P, Yang J B, Shi J J, Lu J 2016 Chem. Mater. 28 2100Google Scholar

    [25]

    Pan Y Y, Dan Y, Wang Y Y, Ye M, Zhang H, Quhe R, Zhang X Y, Li J Z, Guo W L, Yang L, Lu J 2017 ACS Appl. Mater. Interfaces 9 12694Google Scholar

    [26]

    Zhang X Y, Pan Y Y, Ye M, Quhe R, Wang Y Y, Guo Y, Zhang H, Dan Y, Song Z G, Li J Z, Yang J B, Guo W L, Lu J 2017 Nano Res. 11 707

    [27]

    Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A 2014 Nano Lett. 14 5733Google Scholar

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Guo Y, Pan F, Zhao G Y, Ren Y J, Yao B B, Li H, Lu J 2020 Nanoscale 12 15443Google Scholar

    [30]

    Guo Y, Zhao G Y, Pan F, Quhe R, Lu J 2022 J. Electron. Mater. 51 4824Google Scholar

  • 图 1  (a) ML SnS的最佳优化结构侧视和俯视图, 黑色虚线的矩形框为单胞结构; (b) ML SnS的能带结构图, 费米能级(蓝色虚线)能量为零, Γ-XΓ-Y分别表示armchair方向和zigzag方向; (c) ML SnS MOSFET器件的结构示意图

    Fig. 1.  (a) Side and top view of the optimized ML SnS structure, the black dash rectangle represents the primitive cell; (b) band structure of the ML SnS, the blue dashed line indicates the Fermi level, and Γ-X and Γ-Y representing the armchair and zigzag directions, respectively; (c) schematic diagram of the ML SnS MOSFET.

    图 2  测试器件掺杂浓度的转移特性曲线, 不同源极和漏极掺杂电子/空穴(Ne (Nh))浓度下n型和p型5 nm栅长DG ML SnS MOSFET沿zigzag (a)和armchair (b)方向的转移特性曲线

    Fig. 2.  Transfer characteristics of the n- and p-type 5 nm gate-length DG ML SnS MOSFET for different source and drain doping concentrations of electron/hole (Ne (Nh)) along the zigzag (a) and armchair (b) directions.

    图 3  n型和p型DG ML SnS MOSFET器件转移特性曲线 (a) 1—2 nm, (b) 3—5 nm栅极长沿armchair方向转移特性曲线; (c) 1—2 nm, (d) 3—5 nm栅极长沿zigzag方向的转移特性

    Fig. 3.  Transfer characteristics curves of the n- and p-type DG ML SnS MOSFET: (a) 1–2 nm, (b) 3–5 nm gate-length along the armchair direction; (c) 1–2 nm, (d) 3–5 nm gate-length along the zigzag directions.

    图 4  亚5 nm的n型和p型DG ML SnS MOSFET开态电流(a), (b)和亚阈值摆幅(c), (d)与栅极长度的关系

    Fig. 4.  On-state current (a), (b) and subthreshold swing (c), (d) of the sub-5 nm DG n-type and p-type DG ML SnS MOSFET as a function of the gate-length.

    图 5  亚5 nm的n型(a)和p型(b)DG ML SnS MOSFET的开态电流与栅极长度的关系

    Fig. 5.  On-state current of the sub-5 nm n-type (a) and p-type (b) DG ML SnS MOSFET as a function of the Lg, the set of red and green lines indicate the armchair and zigzag directions, respectively.

    图 6  n型和p型MOSFET在HP标准下亚5 nm栅长下的开态电流与ML二维沟道材料有效质量的关系, 所有数据均采基于密度泛函理论的量子输运模拟计算

    Fig. 6.  On-state current of n- and p-type MOSFET for high-performance applications at sub-5 nm gate-lengths versus the effective mass of ML two dimensional channel materials, all the data are calculated by ab initio quantum transport simulations.

    表 1  不同的测试掺杂浓度对应的器件开态电流

    Table 1.  Ion of the SnS MOSFET with different doping concentrations.

    Ne/Nh doping concentration/cm–2Ion (HP/LP)/(μA·μm–1)
    ZigzagArmchair
    n-typep-typen-typep-type
    1×101232.24/33.6945/40.9129.66/21.5531.82/35.72
    5×1012232.26/51.9310.69/95.35741.82/17.33185.95/32.23
    1×10131105.66/35.52756.83/105.06970.15/8.42379.27/42.5
    5×10131330.51/0.4252693.37/0.121216.66/0.061973.2/0.026
    8×10131207.55/0.082280.42/0.00131020.21/0.0074676.8/5.37
    下载: 导出CSV

    表 2  n型和p型DG ML SnS MOSFET器件开态电流、开关比和亚阈值摆幅与ITRS HP和LP标准(2023版)的比较

    Table 2.  Benchmark of the ballistic performances upper limit of the sub-5 nm DG ML SnS MOSFET (zigzag- and armchair-directed) for HP and LP applications against the ITRS requirements (2023 version).



    Lg/nm UL/nm SS/(mV·dec–1) Ion/(μA·μm–1) Ion/Ioff Ion/(μA·μm–1) Ion/Ioff
    HP 5.1 0 900 9.00×103 LP 295 5.9×106
    n-type p-type n-type p-type n-type p-type n-type p-type n-type p-type
    Armchair 1 0 843 719
    2 260 276 31 56 3.1×102 5.6×102
    4 120 122 407 209 4.07×103 2.09×103 2.06 6.34 4.12×104 1.27×105
    2 0 561 418 0.7 7.0×102
    2 212 172 41 319 4.1 3.19×103 0.007 0.0031 1.40×102 61.6
    4 101 90 938 285 9.38×103 2.85×103 45.7 50.83 9.14×105 1.02×106
    3 0 293 254 5.18 13 5.18×101 1.30×102
    2 118 101 1204 665 1.20×104 6.65×103 0.406 0.86 8.12×103 1.72×104
    4 0 189 241 226 292 2.26×103 2.92×103
    2 93 78 2369 817 2.37×104 8.17×103 110.58 92.08 2.21×106 1.84×106
    5 0 125 112 1113 924 1.11×104 9.24×103 0.1 0.03 2.0×103 6.00×102
    Zigzag 1 0 904 603
    2 259 96 72 1934 7.20×102 1.93×104 69.3 1.39×106
    4 107 85 390 545 3.90×103 5.45×103 10.04 79.2 2.01×105 1.58×106
    2 0 530 252
    2 147 101 509 1236 5.09×103 1.24×104 0.035 0.0021 7.0×102 42.8
    4 89 78 621 693 6.21×103 6.93×103 85.02 136.51 1.70×106 2.73×106
    3 0 233 89 4.04 4119 4.04×101 4.12×104 171.91 3.44×106
    2 117 66 1168 1407 1.17×104 1.41×104 7.73 516.18 1.55×105 1.03×107
    4 0 166 106 322 1648 3.22×103 1.65×104
    2 85 70 1843 1874 1.84×104 1.87×104 231.06 271.4 4.62×106 5.43×106
    5 0 118 78 1280 2463 1.28×104 2.46×104 0.67 0.13 1.34×104 2.6×103
    下载: 导出CSV
  • [1]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [2]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [3]

    Wang Y Y, Liu S Q, Li Q W, Quhe R, Yang C, Guo Y, Zhang X Y, Pan Y Y, Li J S, Zhang H, Xu L, Shi B W, Tang H, Li Y, Yang J, Zhang Z Y, Xiao L, Pan F, Lu J 2021 Rep. Prog. Phys. 84 056501Google Scholar

    [4]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [5]

    https://irds.ieee.org/editions/2022

    [6]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C H, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [7]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [8]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [9]

    Xin C, Zheng J X, Su Y T, Li S K, Zhang B K, Feng Y C, Pan F 2016 J. Phys. Chem. C 120 22663Google Scholar

    [10]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2022 Adv. Sci. 10 2201842

    [11]

    Li S B, Xiao W J, Pan Y Y, Jie J S, Xin C, Zheng J X, Lu J, Pan F 2018 J. Phys. Chem. C 122 12322

    [12]

    Chang Y R, Nishimura T, Taniguchi T, Watanabe K, Nagashio K 2022 ACS Appl. Mater. Interfaces 14 19928Google Scholar

    [13]

    Sucharitakul S, Rajesh Kumar U, Sankar R, Chou F C, Chen Y T, Wang C H, He C, He R, Gao X P 2016 Nanoscale 8 19050Google Scholar

    [14]

    Dragoman M, Dinescu A, Avram A, Dragoman D, Vulpe S, Aldrigo M, Braniste T, Suman V, Rusu E, Tiginyanu I 2022 Nanotechnology 33 405207Google Scholar

    [15]

    Pandit A, Hamad B 2021 Appl. Surface Sci. 538 147911Google Scholar

    [16]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434Google Scholar

    [17]

    Zhao P D, Kiriya D, Azcatl A, Zhang C X, Tosun M, Liu Y S, Hettick M, Kang J S, McDonnell S, KC S, Guo J H, Cho K, Wallace R M, Javey A 2014 ACS Nano 8 10808Google Scholar

    [18]

    Fathipour S, Pandey P, Fullerton-Shirey S, Seabaugh A 2016 J. Appl. Phys. 120 234902Google Scholar

    [19]

    Quhe R, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [20]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100Google Scholar

    [21]

    Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M, Lodha S 2014 Appl. Phys. Lett. 105 113505Google Scholar

    [22]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [23]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [24]

    Pan Y Y, Wang Y Y, Ye M, Quhe R, Zhong H X, Song Z G, Peng X Y, Yu D P, Yang J B, Shi J J, Lu J 2016 Chem. Mater. 28 2100Google Scholar

    [25]

    Pan Y Y, Dan Y, Wang Y Y, Ye M, Zhang H, Quhe R, Zhang X Y, Li J Z, Guo W L, Yang L, Lu J 2017 ACS Appl. Mater. Interfaces 9 12694Google Scholar

    [26]

    Zhang X Y, Pan Y Y, Ye M, Quhe R, Wang Y Y, Guo Y, Zhang H, Dan Y, Song Z G, Li J Z, Yang J B, Guo W L, Lu J 2017 Nano Res. 11 707

    [27]

    Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A 2014 Nano Lett. 14 5733Google Scholar

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Guo Y, Pan F, Zhao G Y, Ren Y J, Yao B B, Li H, Lu J 2020 Nanoscale 12 15443Google Scholar

    [30]

    Guo Y, Zhao G Y, Pan F, Quhe R, Lu J 2022 J. Electron. Mater. 51 4824Google Scholar

  • [1] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [2] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [3] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [4] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [5] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计. 物理学报, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [6] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [7] 赵晓辉, 蔡理, 张鹏. 一种碳纳米管场效应管的HSPICE模型. 物理学报, 2013, 62(13): 130506. doi: 10.7498/aps.62.130506
    [8] 赵晓辉, 蔡理, 张鹏. 声子散射下碳纳米管场效应管建模方法研究. 物理学报, 2013, 62(10): 100301. doi: 10.7498/aps.62.100301
    [9] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [10] 孙鹏, 杜磊, 陈文豪, 何亮, 张晓芳. 金属-氧化物-半导体场效应管辐射效应模型研究. 物理学报, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [11] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [12] 周海亮, 池雅庆, 张民选, 方粮. 基于梯度掺杂策略的碳纳米管场效应管性能优化. 物理学报, 2010, 59(11): 8104-8112. doi: 10.7498/aps.59.8104
    [13] 赵起迪, 张振华. 低偏压下单层碳纳米管的输运特征. 物理学报, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [14] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作. 物理学报, 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究. 物理学报, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [16] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟. 物理学报, 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [17] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [18] 徐章程, 贾国治, 孙 亮, 姚江宏, 许京军, J. M. Hvam, 王占国. 亚单层InGaAs量子点-量子阱异质结构的时间分辨光致发光谱. 物理学报, 2005, 54(11): 5367-5371. doi: 10.7498/aps.54.5367
    [19] 杨林安, 张义门, 于春利, 张玉明. SiC功率金属-半导体场效应管的陷阱效应模型. 物理学报, 2003, 52(2): 302-306. doi: 10.7498/aps.52.302
    [20] 李宏伟, 王太宏. InAs自组装量子点GaAs肖特基二极管中的电流输运特性. 物理学报, 2001, 50(2): 262-267. doi: 10.7498/aps.50.262
计量
  • 文章访问数:  764
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-18
  • 修回日期:  2024-09-04
  • 上网日期:  2024-09-12
  • 刊出日期:  2024-10-20

/

返回文章
返回