搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性

王颂文 郭红霞 马腾 雷志锋 马武英 钟向丽 张鸿 卢小杰 李济芳 方俊霖 曾天祥

引用本文:
Citation:

石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性

王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥
cstr: 32037.14.aps.73.20241365

Electrical stress reliability of graphene field effect transistor under different bias voltages

Wang Song-Wen, Guo Hong-Xia, Ma Teng, Lei Zhi-Feng, Ma Wu-Ying, Zhong Xiang-Li, Zhang Hong, Lu Xiao-Jie, Li Ji-Fang, Fang Jun-Lin, Zeng Tian-Xiang
cstr: 32037.14.aps.73.20241365
PDF
HTML
导出引用
  • 本文以顶栅结构的石墨烯场效应晶体管(graphene field effect transistors, GFET)为研究对象, 开展了不同偏置电压条件下的电应力可靠性研究. 实验结果表明, 在不同偏置电压条件的电应力作用下, GFET的载流子迁移率随着电应力时间的延长均不断退化, 而不同偏置电压条件的电应力对狄拉克电压(VDirac)的漂移方向和退化程度的影响不同; 栅极电应力与漏极电应力造成器件的VDirac漂移方向相反, 且栅极电应力要比栅极和漏极电压同时施加的电应力导致GFET的VDirac退化程度更加明显. 分析原因表明, 不同偏置电压条件下的电应力实验在器件中产生的电场方向不同, 从而会影响载流子浓度和移动方向. 诱导沟道中的电子和空穴隧穿进入氧化层, 被氧化层中缺陷和石墨烯/氧化层界面处的陷阱俘获, 形成氧化物陷阱电荷和界面陷阱电荷, 从而导致GFET的载流子迁移率降低. 而电应力产生陷阱电荷的带电类型差异是造成VDirac漂移方向不同的主要原因. 论文结合TCAD仿真, 进一步揭示了电应力感生陷阱电荷对GFET的VDirac产生影响的仿真模型. 相关研究为石墨烯器件的实际应用提供了数据和理论支撑.
    In this paper, graphene field effect transistors (GFETs) with the top-gate structure are taken as the research object. The electrical stress reliabilities are studied under different bias voltage conditions. The electrical pressure conditions are gate electrical stress (VG = –10 V, VD = 0 V, and VS = 0 V), drain electric stress (VD = –10 V, VG = 0 V, and VS = 0 V), and electrical stresses applied simultaneously by gate voltage and drain voltage (VG = –10 V, VD = –10 V, VS = 0 V). Using a semiconductor parameter analyzer, the transfer characteristic curves of GFETs before and after electrical stress are obtained. At the same time, the carrier migration and the Dirac voltage VDirac degradation are extracted from the transfer characteristic curves. The test results show that under different electrical pressures, the carrier mobility of GFETs degrades continuously with the increase of electric stress time. Different electrical pressure conditions have varying effects on the drift direction and degradation of VDirac: gate electrical stress and drain electrical stress cause VDirac drift of the device in opposite directions, and the gate electrical stress is greater than the electrical stress applied by both gate voltage and drain voltage, leading to VDirac degradation of GFETs. An analysis of the causes indicates that different electrical stresses produce different electric field directions in the device, which can affect the carrier concentration and movement direction. Electrons and holes in the channel are induced and tunnel into the oxide layer, and they are captured by trap charges in the oxide layer and at the interface between graphene and oxide, forming oxide trap charges and interface trap charges. This is the main reason for reducing carrier mobility of GFET. Different electric field directions under different electric stresses produce positively charged trap charges and negatively charged trap charges. The difference in the type of trap charge banding is the main reason for the different directions of VDirac drift in GFETs. When both trap charges coexist, they have a canceling effect on the VDirac drift of the GFETs. Finally, by combining TCAD simulation the simulation model of the influence of electrical stress induced trap charge on the VDirac generation of GFET is further revealed. The result demonstrates that the differences in the type of trap charge banding have different degradation effects on the VDirac of GFETs. The related research provides data and theoretical support for putting graphene devices into practical application.
      通信作者: 郭红霞, guohongxia@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12275230, 12027813)资助的课题.
      Corresponding author: Guo Hong-Xia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275230, 12027813).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    陈智, 王子欧, 李亦清, 李有忠, 毛凌锋 2012 微电子学与计算机 29 154

    Chen Z, Wang Z O, Li Y Q, Li Y Z, Mao L F 2012 Microelectron. Comput. 29 154

    [3]

    Radsar T, Khalesi H, Ghods V 2021 Superlattices Microstruct. 153 106869Google Scholar

    [4]

    Zhang Q W 2018 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China) (in Chinese)[张庆伟 2018 博士学位论文 (成都: 电子科技大学)]

    [5]

    Xu J, Gu Z Y, Yang W X, Wang Q L, Zhang X B 2018 Nanoscale Res. Lett. 13 311Google Scholar

    [6]

    Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Borca-Tasciuc T, Ajayan P M, Koratkar N 2010 Small 6 2535Google Scholar

    [7]

    Docherty C J, Lin C T, Joyce H J, Nicholas R J, Herz L M, Li L J, Johnston M B 2012 Nat. Commun. 3 1228Google Scholar

    [8]

    Wang R, Wang S, Zhang D D, Li Z J, Fang Y, Qiu X H 2011 ACS Nano 5 408Google Scholar

    [9]

    Feng T T, Xie D, Li G, Xu J L, Zhao H M, Ren T L, Zhu H W 2014 Carbon 78 250Google Scholar

    [10]

    张庆伟, 李平, 王刚, 曾荣周, 王恒, 周金浩 2017 微电子学与计算机 34 36

    Zhang Q W, Li P, Wang G, Zeng R Z, Wang H, Zhou J H 2017 Microelectron. Comput. 34 36

    [11]

    Ghosh S, Arroyo M 2013 J. Mech. Phys. Solids 61 235Google Scholar

    [12]

    Zhao P, Chauhan J, Guo J 2009 Nano Lett. 9 684Google Scholar

    [13]

    陈卫 2017 博士学位论文 (长沙: 国防科技大学)

    Cheng W 2017 Ph. D. Dissertation (Chang Sha: National University of Defense Technology

    [14]

    Liu P, Wei Y, Jiang K L, Sun Q, Zhang X B, Fan S S, Zhang S F, Ning C G, Deng J K 2006 Phys. Rev. B 73 235412Google Scholar

    [15]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142Google Scholar

    [16]

    Chiu H Y, Perebeinos V, Lin Y M, Avouris P 2010 Nano Lett. 10 4634Google Scholar

    [17]

    李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁 2024 物理学报 73 058501Google Scholar

    Li J F, Guo H X, Ma W Y, Song H J, Zhong X L, Li Y F, Bai R X, Lu X J, Zhang F Q 2024 Acta Phys. Sin. 73 058501Google Scholar

    [18]

    Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar

    [19]

    Esqueda I S, Cress C D, Anderson T J, Ahlbin J R, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar

    [20]

    Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar

    [21]

    Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures 1994-03 pp126–129

    [22]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE Transactions on Nuclear Science 31 1497Google Scholar

    [23]

    Jain S, Shinde V, Gajarushi A, Gupta A, Rao V R 2018 IEEE 13TH Nanotechnology Materials and Devices Conference (NMDC) New York, US October 14–17, 2018 pp353–356

    [24]

    谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511Google Scholar

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511Google Scholar

    [25]

    Childres I, Jauregui L A, Foxe M, Tian J, Jalilian R, Jovanovic I, Chen Y P 2010 Appl. Phys. Lett. 97 173109Google Scholar

    [26]

    Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA (Telecommunication Computing Electronics and Control) 17 1845Google Scholar

    [27]

    Jeppson K 2023 IEEE Trans. Electron Devices 70 1393Google Scholar

  • 图 1  器件结构示意图

    Fig. 1.  Device structure diagram.

    图 2  GFET的转移特性曲线在不同漏极电压下的变化趋势

    Fig. 2.  The variations of the transfer characteristic curve of GFET under different drain voltages.

    图 3  栅极电应力下, GFET的转移特性曲线随电应力累积时间的变化趋势

    Fig. 3.  Variations of GFET transfer characteristic curve with the accumulation time of electrical stress under gate voltage bias condition.

    图 5  栅极和漏极电压同时施加的电应力下, GFET转移特性曲线随电应力累积时间的变化趋势

    Fig. 5.  Variations of GFET transfer characteristic curve with the accumulation time of electrical stress under the condition of electrical stress applied by both the gate and drain voltages.

    图 4  漏极电应力下, GFET的转移特性曲线随电应力累积时间的变化趋势

    Fig. 4.  Variations of GFET transfer characteristic curves with the accumulation time of electrical stress under drain voltage bias conditions.

    图 6  VDirac随着电应力累积时间的变化趋势

    Fig. 6.  The variations of VDirac with the accumulation time of electrical stress.

    图 7  载流子迁移率随电应力累积时间的变化趋势 (a)空穴迁移率随电应力累积时间的变化趋势; (b)电子迁移率随电应力累积时间的变化趋势

    Fig. 7.  The variations of carrier mobility with the accumulation time of electrical stress: (a) The variations of hole mobility with the accumulation time of electrical stress; (b) the variations of electron mobility with the accumulation time of electrical stress.

    图 8  TCAD仿真结果 (a)带正电荷的固定陷阱电荷对GFET转移特性曲线的影响; (b)带负电荷的固定陷阱电荷对GFET转移特性曲线的影响; (c)带正电荷和带负电荷的固定陷阱电荷同时对GFET转移特性曲线的影响

    Fig. 8.  TCAD simulation results: (a) Effect of a positively charged fixed trap charge on the transfer characteristic curve of GFET device; (b) effect of negatively charged fixed trap charge on the transfer characteristic curve of GFET device; (c) the effect of both positively charged and negatively charged fixed trap charges on the transfer characteristic curve of GFET devices.

    表 1  电应力实验测试条件

    Table 1.  Electrical stress test conditions.

    偏置电压条件 电应力测试时间点 转移特性曲线测试条件
    栅极电应力(VG = –10 V, VD = 0 V, VS = 0 V) 0 s, 100 s, 300 s,
    500 s, 1000 s
    VG 从–5 V扫到5 V,
    VD 为20 mV, VS 接地
    漏极电应力 (VG = 0 V, VD = –10 V, VS = 0 V)
    栅极电压与漏极电压同时施加的电应力
    (VD = –10 V, VD = –10 V, VS = 0 V)
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    陈智, 王子欧, 李亦清, 李有忠, 毛凌锋 2012 微电子学与计算机 29 154

    Chen Z, Wang Z O, Li Y Q, Li Y Z, Mao L F 2012 Microelectron. Comput. 29 154

    [3]

    Radsar T, Khalesi H, Ghods V 2021 Superlattices Microstruct. 153 106869Google Scholar

    [4]

    Zhang Q W 2018 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China) (in Chinese)[张庆伟 2018 博士学位论文 (成都: 电子科技大学)]

    [5]

    Xu J, Gu Z Y, Yang W X, Wang Q L, Zhang X B 2018 Nanoscale Res. Lett. 13 311Google Scholar

    [6]

    Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Borca-Tasciuc T, Ajayan P M, Koratkar N 2010 Small 6 2535Google Scholar

    [7]

    Docherty C J, Lin C T, Joyce H J, Nicholas R J, Herz L M, Li L J, Johnston M B 2012 Nat. Commun. 3 1228Google Scholar

    [8]

    Wang R, Wang S, Zhang D D, Li Z J, Fang Y, Qiu X H 2011 ACS Nano 5 408Google Scholar

    [9]

    Feng T T, Xie D, Li G, Xu J L, Zhao H M, Ren T L, Zhu H W 2014 Carbon 78 250Google Scholar

    [10]

    张庆伟, 李平, 王刚, 曾荣周, 王恒, 周金浩 2017 微电子学与计算机 34 36

    Zhang Q W, Li P, Wang G, Zeng R Z, Wang H, Zhou J H 2017 Microelectron. Comput. 34 36

    [11]

    Ghosh S, Arroyo M 2013 J. Mech. Phys. Solids 61 235Google Scholar

    [12]

    Zhao P, Chauhan J, Guo J 2009 Nano Lett. 9 684Google Scholar

    [13]

    陈卫 2017 博士学位论文 (长沙: 国防科技大学)

    Cheng W 2017 Ph. D. Dissertation (Chang Sha: National University of Defense Technology

    [14]

    Liu P, Wei Y, Jiang K L, Sun Q, Zhang X B, Fan S S, Zhang S F, Ning C G, Deng J K 2006 Phys. Rev. B 73 235412Google Scholar

    [15]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142Google Scholar

    [16]

    Chiu H Y, Perebeinos V, Lin Y M, Avouris P 2010 Nano Lett. 10 4634Google Scholar

    [17]

    李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁 2024 物理学报 73 058501Google Scholar

    Li J F, Guo H X, Ma W Y, Song H J, Zhong X L, Li Y F, Bai R X, Lu X J, Zhang F Q 2024 Acta Phys. Sin. 73 058501Google Scholar

    [18]

    Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar

    [19]

    Esqueda I S, Cress C D, Anderson T J, Ahlbin J R, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar

    [20]

    Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar

    [21]

    Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures 1994-03 pp126–129

    [22]

    Galloway K F, Gaitan M, Russell T J 1984 IEEE Transactions on Nuclear Science 31 1497Google Scholar

    [23]

    Jain S, Shinde V, Gajarushi A, Gupta A, Rao V R 2018 IEEE 13TH Nanotechnology Materials and Devices Conference (NMDC) New York, US October 14–17, 2018 pp353–356

    [24]

    谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511Google Scholar

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511Google Scholar

    [25]

    Childres I, Jauregui L A, Foxe M, Tian J, Jalilian R, Jovanovic I, Chen Y P 2010 Appl. Phys. Lett. 97 173109Google Scholar

    [26]

    Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA (Telecommunication Computing Electronics and Control) 17 1845Google Scholar

    [27]

    Jeppson K 2023 IEEE Trans. Electron Devices 70 1393Google Scholar

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高. 物理学报, 2024, 73(14): 146302. doi: 10.7498/aps.73.20240557
    [3] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [4] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [5] 王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥. 石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241365
    [6] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [7] 韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华. 非金属原子掺杂扶手椅型砷烯纳米管的磁电子性质及调控. 物理学报, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [8] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [9] 汤家鑫, 范志强, 邓小清, 张振华. 非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应. 物理学报, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [10] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [11] 陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华. 铁电负电容场效应晶体管研究进展. 物理学报, 2020, 69(13): 137701. doi: 10.7498/aps.69.20200354
    [12] 赵毅, 李骏康, 郑泽杰. 硅/锗基场效应晶体管沟道中载流子散射机制研究进展. 物理学报, 2019, 68(16): 167301. doi: 10.7498/aps.68.20191146
    [13] 陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣. 小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现. 物理学报, 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [14] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [15] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性. 物理学报, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [16] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [17] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [18] 谷文萍, 张林, 李清华, 邱彦章, 郝跃, 全思, 刘盼枝. 中子辐照对AlGaN/GaN高电子迁移率晶体管器件电特性的影响. 物理学报, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [19] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展. 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [20] 李斌, 刘红侠, 袁博, 李劲, 卢凤铭. 应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型. 物理学报, 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
计量
  • 文章访问数:  225
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-27
  • 修回日期:  2024-10-26
  • 上网日期:  2024-11-14
  • 刊出日期:  2024-12-05

/

返回文章
返回