搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

揭示热反射实验中热物性参数的本征关系

陈韬 江普庆

引用本文:
Citation:

揭示热反射实验中热物性参数的本征关系

陈韬, 江普庆
cstr: 32037.14.aps.73.20241369

Unraveling intrinsic relationship of thermal properties in thermoreflectance experiments

Chen Tao, Jiang Pu-Qing
cstr: 32037.14.aps.73.20241369
PDF
HTML
导出引用
  • 热反射技术是测量块体和薄膜材料热物性的重要工具, 但参数间复杂的相互关系为数据解析带来挑战. 本文以频域热反射法(FDTR)为例, 利用奇异值分解(SVD)对热反射信号进行了深入分析, 系统地揭示了不同变量之间的关联, 并提出了热反射实验中的关键组合参数. 这种方法不仅厘清了变量间的关系, 还明确了实验中可提取的最大参数数量. 作为应用实例, 本文对铝/蓝宝石样品进行了测量和信号分析, 发现相较于常规仅拟合衬底热导率和界面热导两个参数的做法, 最佳拟合FDTR信号能够同时确定金属膜热导率、衬底热导率、衬底比热容和界面热导四个参数. 拟合结果与文献参考值和其他方法测量结果进行了对比, 验证了该方法的有效性. 本研究深化了对热反射现象的理解, 为热表征技术和材料研究的进一步发展提供了有力支持.
    Thermoreflectance techniques, particularly frequency-domain thermoreflectance (FDTR), play a crucial role in measuring the thermal properties of bulk and thin-film materials. These methods precisely measure thermal conductivity, specific heat capacity, and interfacial thermal conductance by analyzing the surface temperature response signals through thermoreflectance. However, the complex interplay among parameters presents challenges in data analysis, where single-variable analysis often fails to accurately capture intra-layer and inter-layer interactions. In this work, FDTR is used as a case study and the relationships between sensitivity coefficients of various parameters are systematically explored through singular value decomposition (SVD). Specifically, the SVD of sensitivity matrix S of the system's parameters is performed to identify smaller singular values and their corresponding right singular vectors, which are the basis vectors of the null space of matrix S . These vectors reveal the relationships among parameter sensitivities, thereby uncovering the most fundamental combination parameters that determine the thermoreflectance signal. This method not only clarifies the dependency relationships between variables but also determines the maximum number of parameters that can be experimentally extracted, and the parameters that must be known beforehand. To demonstrate the practical value of these combination parameters, this work conducts a detailed analysis of FDTR signals from an aluminum/sapphire sample. Unlike traditional FDTR experiments, which typically fit only the thermal conductivity and interfacial thermal conductance of the substrate, our sensitivity analysis reveals that it is possible to simultaneously determine the thermal conductivity of the metal film, substrate’s thermal conductivity, substrate’s specific heat capacity, and interfacial thermal conductance. The fitting results are consistent with reference values from the literature and measurements from other thermoreflectance techniques, thus validating the effectiveness and reliability of our method. This comprehensive analysis not only deepens the understanding of thermoreflectance phenomena but also provides strong support for the future development of thermal characterization technology and material research, showing the significant potential application of SVD in complex multi-parameter systems.
      通信作者: 江普庆, jpq2021@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52376058)资助的课题.
      Corresponding author: Jiang Pu-Qing, jpq2021@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52376058).
    [1]

    Goodson K E, Ju Y S 1999 Annu. Rev. Mater. Sci. 29 261Google Scholar

    [2]

    El Sachat A, Alzina F, Sotomayor Torres C M, Chavez Angel E 2021 Nanomaterials 11 175Google Scholar

    [3]

    Tan J, Zhang Y 2024 Molecules 29 3572Google Scholar

    [4]

    Jiang P, Qian X, Yang R 2017 Rev. Sci. Instrum. 88 074901Google Scholar

    [5]

    Jiang P, Qian X, Yang R 2018 Rev. Sci. Instrum. 89 094902Google Scholar

    [6]

    Cahill D G 2004 Rev. Sci. Instrum. 75 5119Google Scholar

    [7]

    Schmidt A J, Cheaito R, Chiesa M 2009 Rev. Sci. Instrum. 80 094901Google Scholar

    [8]

    Rodin D, Yee S K 2017 Rev. Sci. Instrum. 88 014902Google Scholar

    [9]

    Tang L, Dames C 2021 Int. J. Heat Mass Transfer 164 120600Google Scholar

    [10]

    Zhang C, Wang J, Mou J, Li X, Wang R 2019 IEEE 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE) Dalian, PR China September 28-30, 2019 p10-13

    [11]

    王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰 2021 物理学报 70 150201Google Scholar

    Wang F R, Yang F, Zhang Y, Li S Z, Wang H F 2021 Acta Phys. Sin. 70 150201Google Scholar

    [12]

    Han T, Jiang D, Zhang X, Sun Y 2017 Sensors 17 689Google Scholar

    [13]

    Yin X, Xu Y, Sheng X, Shen Y 2019 Sensors 19 5032Google Scholar

    [14]

    Chen T, Song S, Shen Y, Zhang K, Jiang P 2024 Int. Commun. Heat Mass Transfer 158 107849Google Scholar

    [15]

    Golub G H, van Loan C F 2013 Matrix computations (Bapat R B: Johns Hopkins Uinversity press

    [16]

    Wilson O M, Hu X, Cahill D G, Braun P V 2002 Phys. Rev. B 66 224301Google Scholar

    [17]

    Wilson R B, Feser J P, Hohensee G T, Cahill D G 2013 Phys. Rev. B 88 144305Google Scholar

    [18]

    Touloukian Y, Buyco E 1971 Thermophysical properties of matter-the TPRC data series. Volume 4. Specific heat-metallic elements and alloys (Reannouncement) Data book Report

    [19]

    Chen T, Song S, Hu R, Jiang P 2025 Int. J. Therm. Sci. 207 109347Google Scholar

    [20]

    Yang J, Ziade E, Schmidt A J 2016 Rev. Sci. Instrum. 87 014901Google Scholar

  • 图 1  频域热反射法实验系统示意图

    Fig. 1.  Schematic diagram of the frequency domain thermoreflectance experimental setup.

    图 2  铝/蓝宝石样品的频域热反射分析 (a1), (a2) 1 kHz—70 MHz频率范围内的相位信号和归一化幅值信号; (b1), (b2) 单个参数敏感性随频率的变化; (c1), (c2)组合参数敏感性随频率的变化

    Fig. 2.  FDTR analysis of aluminum/sapphire samples: (a1), (a2) Phase and normalized amplitude signals across frequencies from 1 kHz to 70 MHz; (b1), (b2) how the sensitivity of individual parameters varies with frequency; (c1), (c2) changes in the sensitivity of combined parameters across the frequency spectrum.

    图 3  (a) ${k_{z1}}$, ${k_{r1}}$, ${C_1}$, ${h_1}$的敏感性曲线, 横坐标为频率; (b) 各个${{\boldsymbol{v}}_j}$与敏感性矩阵${{\boldsymbol{S}}_1}$相乘得到的结果

    Fig. 3.  (a) Sensitivity curves for ${k_{z1}}$, ${k_{r1}}$, ${C_1}$, and ${h_1}$, with frequency as the horizontal axis; (b) the results of multiplying each ${{\boldsymbol{v}}_j}$ by the sensitivity matrix ${{\boldsymbol{S}}_1}$.

    表 1  三明治结构模拟样品的系统参数

    Table 1.  System parameters of a sandwich structure simulated sample.

    ${k_z}$/${\text{(W}} {\cdot }{{\text{m}}^{{{ - 1}}}} \cdot {{\text{K}}^{{{ - 1}}}})$ ${k_r}$/${\text{(W}}{ \cdot }{{\text{m}}^{{{ - 1}}}} \cdot {{\text{K}}^{{{ - 1}}}})$ $C$/${\text{(MJ}} {\cdot} {{\text{m}}^{ - 3}}{{\cdot}}{{\text{K}}^{{{ - 1}}}}{)}$ $h$/${\text{nm}}$ ${r_0}$/$ {\text{μm}}$ G1/${\text{(MW}}{ \cdot} {{\text{m}}^{ - 2}}{{\cdot}}{{\text{K}}^{ - 1}})$ G2/${\text{(MW}} {\cdot }{{\text{m}}^{ - 2}}{{\cdot}}{{\text{K}}^{ - 1}})$
    1(Al) $150$ $150$ $2.44$ $100$ $8$ 10 10
    2 $10$ $100$ $2$ $2000$
    3(Sub) $100$ $10$ $1.5$ $\infty $
    下载: 导出CSV

    表 2  面内各向同性多层结构中的组合参数

    Table 2.  Combined parameters in isotropic multilayer structures in-plane.

    层序号 组合参数
    1 $\dfrac{{\sqrt {{k_{z1}}{C_1}} }}{{{h_1}{C_1}}}, \;\dfrac{{{k_{r1}}}}{{{C_1}r_0^2}}$
    1/2 $\dfrac{{{G_1}}}{{{h_1}{C_1}}}$
    $\vdots $ $\vdots $
    n $\dfrac{{\sqrt {{k_{zn}}{C_n}} }}{{{h_n}{C_n}}}, \;\dfrac{{\sqrt {{k_{zn}}{C_n}} }}{{{h_{n - 1}}{C_{n - 1}}}}, \;\dfrac{{{k_{rn}}}}{{{C_n}r_0^2}}$
    n/(n + 1) $\dfrac{{{G_n}}}{{{h_n}{C_n}}}$
    $\vdots $ $\vdots $
    N $\dfrac{{\sqrt {{k_{zN}}{C_N}} }}{{{h_{N - 1}}{C_{N - 1}}}},\; \dfrac{{{k_{rN}}}}{{{C_N}r_0^2}}$
    下载: 导出CSV
  • [1]

    Goodson K E, Ju Y S 1999 Annu. Rev. Mater. Sci. 29 261Google Scholar

    [2]

    El Sachat A, Alzina F, Sotomayor Torres C M, Chavez Angel E 2021 Nanomaterials 11 175Google Scholar

    [3]

    Tan J, Zhang Y 2024 Molecules 29 3572Google Scholar

    [4]

    Jiang P, Qian X, Yang R 2017 Rev. Sci. Instrum. 88 074901Google Scholar

    [5]

    Jiang P, Qian X, Yang R 2018 Rev. Sci. Instrum. 89 094902Google Scholar

    [6]

    Cahill D G 2004 Rev. Sci. Instrum. 75 5119Google Scholar

    [7]

    Schmidt A J, Cheaito R, Chiesa M 2009 Rev. Sci. Instrum. 80 094901Google Scholar

    [8]

    Rodin D, Yee S K 2017 Rev. Sci. Instrum. 88 014902Google Scholar

    [9]

    Tang L, Dames C 2021 Int. J. Heat Mass Transfer 164 120600Google Scholar

    [10]

    Zhang C, Wang J, Mou J, Li X, Wang R 2019 IEEE 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE) Dalian, PR China September 28-30, 2019 p10-13

    [11]

    王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰 2021 物理学报 70 150201Google Scholar

    Wang F R, Yang F, Zhang Y, Li S Z, Wang H F 2021 Acta Phys. Sin. 70 150201Google Scholar

    [12]

    Han T, Jiang D, Zhang X, Sun Y 2017 Sensors 17 689Google Scholar

    [13]

    Yin X, Xu Y, Sheng X, Shen Y 2019 Sensors 19 5032Google Scholar

    [14]

    Chen T, Song S, Shen Y, Zhang K, Jiang P 2024 Int. Commun. Heat Mass Transfer 158 107849Google Scholar

    [15]

    Golub G H, van Loan C F 2013 Matrix computations (Bapat R B: Johns Hopkins Uinversity press

    [16]

    Wilson O M, Hu X, Cahill D G, Braun P V 2002 Phys. Rev. B 66 224301Google Scholar

    [17]

    Wilson R B, Feser J P, Hohensee G T, Cahill D G 2013 Phys. Rev. B 88 144305Google Scholar

    [18]

    Touloukian Y, Buyco E 1971 Thermophysical properties of matter-the TPRC data series. Volume 4. Specific heat-metallic elements and alloys (Reannouncement) Data book Report

    [19]

    Chen T, Song S, Hu R, Jiang P 2025 Int. J. Therm. Sci. 207 109347Google Scholar

    [20]

    Yang J, Ziade E, Schmidt A J 2016 Rev. Sci. Instrum. 87 014901Google Scholar

  • [1] 王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰. 基于奇异值分解的矩阵低秩近似量子算法. 物理学报, 2021, 70(15): 150201. doi: 10.7498/aps.70.20210411
    [2] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [3] 张海峰, 王文旭. 复杂系统重构. 物理学报, 2020, 69(8): 088906. doi: 10.7498/aps.69.20200001
    [4] 王仲根, 沐俊文, 林涵, 聂文艳. 新型缩减矩阵构造加快特征基函数法迭代求解. 物理学报, 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [5] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [6] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较. 物理学报, 2015, 64(24): 240201. doi: 10.7498/aps.64.240201
    [7] 黄启灿, 胡淑娟, 邱春雨, 李宽, 于海鹏, 丑纪范. 基于无导数优化方法的数值模式误差估计. 物理学报, 2014, 63(14): 149203. doi: 10.7498/aps.63.149203
    [8] 苏海晶, 王启光, 杨杰, 钱忠华. 基于奇异值分解对中国夏季降水模式误差订正的研究. 物理学报, 2013, 62(10): 109202. doi: 10.7498/aps.62.109202
    [9] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法. 物理学报, 2013, 62(14): 148702. doi: 10.7498/aps.62.148702
    [10] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [11] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究. 物理学报, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [12] 宋伟, 侯建军, 李赵红, 黄亮. 一种基于Logistic混沌系统和奇异值分解的零水印算法. 物理学报, 2009, 58(7): 4449-4456. doi: 10.7498/aps.58.4449
    [13] 刘 冬, 王 飞, 黄群星, 严建华, 池 涌, 岑可法. 二维弥散介质温度场的快速重建. 物理学报, 2008, 57(8): 4812-4816. doi: 10.7498/aps.57.4812
    [14] 郭成豹, 肖昌汉, 刘大明. 基于积分方程法和奇异值分解的磁性目标磁场延拓技术研究. 物理学报, 2008, 57(7): 4182-4188. doi: 10.7498/aps.57.4182
    [15] 程荣军, 程玉民. 带源参数的热传导反问题的无网格方法. 物理学报, 2007, 56(10): 5569-5574. doi: 10.7498/aps.56.5569
    [16] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究. 物理学报, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [17] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [18] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [19] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [20] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
计量
  • 文章访问数:  212
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-10-27
  • 上网日期:  2024-11-08

/

返回文章
返回