-
铌酸钠基介电储能材料具有相对密度低、无铅及低成本等优点,能够满足电子元器件向小型化、无害化、集成化和轻量化方向发展的重大需求.本文通过在NaNbO3陶瓷中同时引入Bi (Mg0.5Sn0.5) O3和(Bi0.5Na0.5)0.7Sr0.3TiO3组分,采用传统固相烧结法制备(1-x)[0.93NaNbO3-0.07Bi (Mg0.5Sn0.5) O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3[简称(1-x)(NN-BMS)-xBNST,0.00 ≤ x ≤ 0.30]弛豫铁电陶瓷,并利用X-射线衍射、扫描电子显微镜、紫外光谱和拉曼光谱等技术对陶瓷进行表征,研究(Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对NaNbO3陶瓷的物相组成、微观形貌,以及介电和储能等电学性能的影响.0.75(NN-BMS)-0.25BNST陶瓷具有优良的介电温度稳定性(25~160℃,Δε/ε25℃≤±15%)和介电频率稳定性,满足EIAZ8U标准,具备在特殊环境下(高温/高频)工作的潜力.另外,0.75(NN-BMS)-0.25BNST陶瓷在较高的场强下(390 kV/cm)获得了良好的储能性能:有效储能密度(Wrec)=2.73 J/cm3,储能效率(η)=82.6%,且性能在20~100℃的温度范围内具有高的温度稳定性.研究表明0.75(NN-BMS)-0.25BNST陶瓷在无铅介电储能电容器中有着广阔的应用前景。As a key component in capacitors, sodium niobate-based dielectric energy storage materials have the advantages of low relative density, lead-free, low cost and excellent energy storage density, and can meet the significant demand for electronic components to develop towards miniaturization, harmlessness, integration and light weight. Therefore, they have received extensive attention and constantly research from the scientific community in recent years. In this paper, by introducing both Bi(Mg0.5Sn0.5)O3 and (Bi0.5Na0.5)0.7Sr0.3TiO3 components into NaNbO3 ceramics, the conventional solid-phase sintering method was used to prepare (1-x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 (Abbreviated as (1-x)(NN-BMS)-xBNST, 0.00 ≤ x ≤ 0.3)relaxation ferroelectric ceramics, and characterized the ceramics using X-ray diffraction, scanning electron microscopy, UV spectroscopy and Raman spectroscopy to study the effect of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on the physical phase composition, microstructure, as well as electrical properties of NaNbO3 ceramics, such as dielectric and energy storage. (1-x)(NN-BMS)-xBNST ceramics exhibit a single perovskite structure, with an increase in cell volume followed by a decrease, and coexistence of Pbma and Pnma phases. (1-x)(NN-BMS)-xBNST ceramics exhibit a dense microstructure and clear grain boundaries at the optimal sintering temperature. The average grain size first increased to 4.73 μm, then decreased to 2.17 μm, and then increased to 3.06 μm. A smaller grain size and a larger bandgap width are beneficial for improving the breakdown strength. 0.75(NN-BMS)-0.25BNST ceramic demonstrated excellent dielectric temperature stability (25 ~ 160 ℃,Δε/ε25℃ ≤ ±15%) and dielectric frequency stability, which can meet the EIAZ8U standard and hence work in a special environment (high temperature/high frequency). Meanwhile, 0.75(NN-BMS)-0.25BNST ceramic achieved good energy storage performances at high field strength (390 kV/cm): recoverable energy density(Wrec) = 2.73 J/cm3, energy storage efficiency (η) = 82.6%, and high temperature stability in the temperature range of 20~100 ℃. Research has shown that 0.75(NN-BMS)-0.25BNST ceramics have broad application prospects in lead-free dielectric energy storage capacitors.
-
Keywords:
- Sodium niobate /
- relaxor ferroelectric /
- lead-free energy storage ceramics /
- energy storage properties
-
[1] Yang M Z, Jiang J Y, Shen Y 2021 J. Chin. Ceram. Soc. 49 1249(in Chinese) [杨敏铮, 江建勇, 沈洋2021硅酸盐学报49 1250]
[2] Yang F, Pan Z B, Ling Z Q, Hu D, Ding J, Li P, Liu J J, Zhai J W 2021J. Eur. Ceram. Soc. 41 254
[3] Li S, Nie H, Wang G, Xu C, Liu N, Zhou M, Cao F, Dong X 2019J. Mater. Chem. C. 7 1551
[4] Zou K L, Dan Y, Xu H J, Zhang Q F, Lu Y M, Huang H T, He Y B 2019Mater. Res. Bull. 113 190
[5] Shen Z H, Jiang Y D, Li B W, Zhang X 2020Acta Phys. Sin. 69 217706(in Chinese) [沈忠慧, 江彦达, 李宝文, 张鑫2020物理学报69217706]
[6] Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018ACS Sustain. Chem. Eng. 6 12755
[7] Zhang S, Xia R, Shrout T R 2007J. Electroceram. 19 251
[8] Shrout T R, Zhang S J 2007J. Electroceram. 19 113
[9] Zhang T F, Si Y Y, Li Y J, Chen Z H 2023Acta Phys. Sin. 72 097704(in Chinese) [张天富, 司洋洋, 黎意杰, 陈祖煌2023物理学报72 097704]
[10] Yu Z L, Liu Y F, Shen M Y, Qian H, Li F F, Lyu Y N 2017Ceram. Int. 43 7653
[11] Yao F Z, Yuan Q, Wang Q, Wang H 2020Nanoscale. 12 17165
[12] Li D X, Zeng X J, Li Z P, Shen Z Y, Hao H, Luo W Q, Wang X C, Song F S, Wang Z M, Li Y M 2021J. Adv. Ceram. 10 675
[13] Yang Z T, Du H L, Jin L, Poelman D 2021J. Mater. Chem. A. 918026.
[14] Zheng M, Yang J, Zhang Y X, Guan P F, Cheng A, Fan H L 2023Acta Phys. Sin. 72 177801(in Chinese) [郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良2023物理学报72 177801]
[15] Liang C, Wang C Y, Zhao H Y, Cao W J, Li F, Wang C C 2023J. Alloys Compd. 961 170962.
[16] Ye J M, Wang G S, Chen X F, Dong X L 2021J. Mater. 7 339
[17] Chen J, Qi H, Zuo R Z 2020ACS Appl. Mater. Inter. 12 32871
[18] Wada, T.; Tsuji, K.; Saito, T.; Matsuo, Y 2003Jpn. J. Appl. Phys. 42 6110
[19] Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018ACS Sustain. Chem. Eng. 6 12755
[20] Qi H, Zuo R Z 2019J. Mater. Chem. A. 7 3971
[21] Pang F H, Chen X L, Sun C C, Shi J P, Li X, Chen H Y, Dong X Y, Zhou H F 2020ACS Sustain. Chem. Eng. 8 14985
[22] Xu Z Q, Liu Z, Dai K, Lu T, Lv Z Q, Hu Z G, Liu Y, Wang G S 2022J. Mater. Chem. A. 10 13907
[23] Guo Y F, Wang J X, Wang Z X, Li J M, Liu C 2024Acta Chim. Sinica. 82 511(in Chinese) [郭云凤, 王俊贤, 王泽星, 李家茂, 刘畅2024化学学报82 511]
[24] Pang F H, Chen X L, Shi J P, Sun C C, Chen H Y, Dong X Y, Zhou H F 2021ACS Sustain. Chem. Eng 9 4863
[25] Shannon R D 1979Acta. Cryst. A. 32 751
[26] Zhang S Y, Li W H, Zhang Y S, Tang X G, Jiang Y P, Guo X B 2023Results. Phys. 44106194
[27] Chen H Y, Wang X, Dong X Y, Pan Y, Wang J M, Deng L, Dong Q P, Zhang H L, Zhou H F, Chen X L 2022ACS Appl. Mater. Inter. 14 25609
[28] Dong X Y, Li X, Chen X L, Tan Z, Wu J G, Zhu J G, Zhou H F 2022Nano Energy. 101 107577
[29] Chen X L, Li X, Sun J, Sun C C, Shi J P, Pang F H, Zhou H F 2020Ceram. Int. 46 2764
[30] Han K, Luo N N, Chen Z P, Ma L, Chen X L, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020J. Eur. Ceram. Soc. 40 3562
[31] Yan F, Bai H R, Shi Y J, Ge G L, Zhou X F, Lin J F, Shen B, Zhai J W 2021Chem. Eng. J. 425 130669
[32] Shi J P, Chen X L, Li X, Sun J, Sun C C, Pang F H, Zhou H F 2020J. Mater. Chem. C. 83784
[33] Cao W J, Lin R J, Chen P F, Li F, Ge B H, Song D S, Zhang J, Cheng Z X, Wang C C 2022ACS Appl. Mater. Inter. 14 54051
[34] Sun N N, Li Y, Zhang Q W, Hao X H 2018J. Mater. Chem. C. 6 10693
[35] Shen Y H, Wu L K, Zhao J H, Liu J J, Tang L M, Chen X Q, Li H H, Su Z, Zhang Y, Zhai J W, Pan Z B 2022Chem. Eng. J. 439 135762
[36] Nie X R, He Y, Shi Q Q, Liang Y Q, Wei L L, Liang P F, Chao X L, Hu G X, Yang Z P 2023J. Adv. Dielect. 13 2242005
[37] Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69127703(in Chinese) [杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红2020物理学报 69 127703]
[38] Wei K, Duan J H, Zhou X F, Li G S, Zhang D, Li H 2023 ACS Appl. Mater. Inter. 15 48354
计量
- 文章访问数: 56
- PDF下载量: 3
- 被引次数: 0