搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷的结构与电学性能的影响

郭云凤 王俊贤 王泽星 李家茂 陈立明

引用本文:
Citation:

Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷的结构与电学性能的影响

郭云凤, 王俊贤, 王泽星, 李家茂, 陈立明

The influence of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on the structure and electrical properties of [0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3] ceramics

Guo Yun-Feng, Wang Jun-Xian, Wang Ze-Xing, Li Jia-Mao, Chen Li-Ming
PDF
导出引用
  • 铌酸钠基介电储能材料具有相对密度低、无铅及低成本等优点,能够满足电子元器件向小型化、无害化、集成化和轻量化方向发展的重大需求.本文通过在NaNbO3陶瓷中同时引入Bi (Mg0.5Sn0.5) O3和(Bi0.5Na0.5)0.7Sr0.3TiO3组分,采用传统固相烧结法制备(1-x)[0.93NaNbO3-0.07Bi (Mg0.5Sn0.5) O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3[简称(1-x)(NN-BMS)-xBNST,0.00 ≤ x ≤ 0.30]弛豫铁电陶瓷,并利用X-射线衍射、扫描电子显微镜、紫外光谱和拉曼光谱等技术对陶瓷进行表征,研究(Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对NaNbO3陶瓷的物相组成、微观形貌,以及介电和储能等电学性能的影响.0.75(NN-BMS)-0.25BNST陶瓷具有优良的介电温度稳定性(25~160℃,Δε/ε25℃≤±15%)和介电频率稳定性,满足EIAZ8U标准,具备在特殊环境下(高温/高频)工作的潜力.另外,0.75(NN-BMS)-0.25BNST陶瓷在较高的场强下(390 kV/cm)获得了良好的储能性能:有效储能密度(Wrec)=2.73 J/cm3,储能效率(η)=82.6%,且性能在20~100℃的温度范围内具有高的温度稳定性.研究表明0.75(NN-BMS)-0.25BNST陶瓷在无铅介电储能电容器中有着广阔的应用前景。
    As a key component in capacitors, sodium niobate-based dielectric energy storage materials have the advantages of low relative density, lead-free, low cost and excellent energy storage density, and can meet the significant demand for electronic components to develop towards miniaturization, harmlessness, integration and light weight. Therefore, they have received extensive attention and constantly research from the scientific community in recent years. In this paper, by introducing both Bi(Mg0.5Sn0.5)O3 and (Bi0.5Na0.5)0.7Sr0.3TiO3 components into NaNbO3 ceramics, the conventional solid-phase sintering method was used to prepare (1-x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 (Abbreviated as (1-x)(NN-BMS)-xBNST, 0.00 ≤ x ≤ 0.3)relaxation ferroelectric ceramics, and characterized the ceramics using X-ray diffraction, scanning electron microscopy, UV spectroscopy and Raman spectroscopy to study the effect of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on the physical phase composition, microstructure, as well as electrical properties of NaNbO3 ceramics, such as dielectric and energy storage. (1-x)(NN-BMS)-xBNST ceramics exhibit a single perovskite structure, with an increase in cell volume followed by a decrease, and coexistence of Pbma and Pnma phases. (1-x)(NN-BMS)-xBNST ceramics exhibit a dense microstructure and clear grain boundaries at the optimal sintering temperature. The average grain size first increased to 4.73 μm, then decreased to 2.17 μm, and then increased to 3.06 μm. A smaller grain size and a larger bandgap width are beneficial for improving the breakdown strength. 0.75(NN-BMS)-0.25BNST ceramic demonstrated excellent dielectric temperature stability (25 ~ 160 ℃,Δε/ε25℃ ≤ ±15%) and dielectric frequency stability, which can meet the EIAZ8U standard and hence work in a special environment (high temperature/high frequency). Meanwhile, 0.75(NN-BMS)-0.25BNST ceramic achieved good energy storage performances at high field strength (390 kV/cm): recoverable energy density(Wrec) = 2.73 J/cm3, energy storage efficiency (η) = 82.6%, and high temperature stability in the temperature range of 20~100 ℃. Research has shown that 0.75(NN-BMS)-0.25BNST ceramics have broad application prospects in lead-free dielectric energy storage capacitors.
  • [1]

    Yang M Z, Jiang J Y, Shen Y 2021 J. Chin. Ceram. Soc. 49 1249(in Chinese) [杨敏铮, 江建勇, 沈洋2021硅酸盐学报49 1250]

    [2]

    Yang F, Pan Z B, Ling Z Q, Hu D, Ding J, Li P, Liu J J, Zhai J W 2021J. Eur. Ceram. Soc. 41 254

    [3]

    Li S, Nie H, Wang G, Xu C, Liu N, Zhou M, Cao F, Dong X 2019J. Mater. Chem. C. 7 1551

    [4]

    Zou K L, Dan Y, Xu H J, Zhang Q F, Lu Y M, Huang H T, He Y B 2019Mater. Res. Bull. 113 190

    [5]

    Shen Z H, Jiang Y D, Li B W, Zhang X 2020Acta Phys. Sin. 69 217706(in Chinese) [沈忠慧, 江彦达, 李宝文, 张鑫2020物理学报69217706]

    [6]

    Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018ACS Sustain. Chem. Eng. 6 12755

    [7]

    Zhang S, Xia R, Shrout T R 2007J. Electroceram. 19 251

    [8]

    Shrout T R, Zhang S J 2007J. Electroceram. 19 113

    [9]

    Zhang T F, Si Y Y, Li Y J, Chen Z H 2023Acta Phys. Sin. 72 097704(in Chinese) [张天富, 司洋洋, 黎意杰, 陈祖煌2023物理学报72 097704]

    [10]

    Yu Z L, Liu Y F, Shen M Y, Qian H, Li F F, Lyu Y N 2017Ceram. Int. 43 7653

    [11]

    Yao F Z, Yuan Q, Wang Q, Wang H 2020Nanoscale. 12 17165

    [12]

    Li D X, Zeng X J, Li Z P, Shen Z Y, Hao H, Luo W Q, Wang X C, Song F S, Wang Z M, Li Y M 2021J. Adv. Ceram. 10 675

    [13]

    Yang Z T, Du H L, Jin L, Poelman D 2021J. Mater. Chem. A. 918026.

    [14]

    Zheng M, Yang J, Zhang Y X, Guan P F, Cheng A, Fan H L 2023Acta Phys. Sin. 72 177801(in Chinese) [郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良2023物理学报72 177801]

    [15]

    Liang C, Wang C Y, Zhao H Y, Cao W J, Li F, Wang C C 2023J. Alloys Compd. 961 170962.

    [16]

    Ye J M, Wang G S, Chen X F, Dong X L 2021J. Mater. 7 339

    [17]

    Chen J, Qi H, Zuo R Z 2020ACS Appl. Mater. Inter. 12 32871

    [18]

    Wada, T.; Tsuji, K.; Saito, T.; Matsuo, Y 2003Jpn. J. Appl. Phys. 42 6110

    [19]

    Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018ACS Sustain. Chem. Eng. 6 12755

    [20]

    Qi H, Zuo R Z 2019J. Mater. Chem. A. 7 3971

    [21]

    Pang F H, Chen X L, Sun C C, Shi J P, Li X, Chen H Y, Dong X Y, Zhou H F 2020ACS Sustain. Chem. Eng. 8 14985

    [22]

    Xu Z Q, Liu Z, Dai K, Lu T, Lv Z Q, Hu Z G, Liu Y, Wang G S 2022J. Mater. Chem. A. 10 13907

    [23]

    Guo Y F, Wang J X, Wang Z X, Li J M, Liu C 2024Acta Chim. Sinica. 82 511(in Chinese) [郭云凤, 王俊贤, 王泽星, 李家茂, 刘畅2024化学学报82 511]

    [24]

    Pang F H, Chen X L, Shi J P, Sun C C, Chen H Y, Dong X Y, Zhou H F 2021ACS Sustain. Chem. Eng 9 4863

    [25]

    Shannon R D 1979Acta. Cryst. A. 32 751

    [26]

    Zhang S Y, Li W H, Zhang Y S, Tang X G, Jiang Y P, Guo X B 2023Results. Phys. 44106194

    [27]

    Chen H Y, Wang X, Dong X Y, Pan Y, Wang J M, Deng L, Dong Q P, Zhang H L, Zhou H F, Chen X L 2022ACS Appl. Mater. Inter. 14 25609

    [28]

    Dong X Y, Li X, Chen X L, Tan Z, Wu J G, Zhu J G, Zhou H F 2022Nano Energy. 101 107577

    [29]

    Chen X L, Li X, Sun J, Sun C C, Shi J P, Pang F H, Zhou H F 2020Ceram. Int. 46 2764

    [30]

    Han K, Luo N N, Chen Z P, Ma L, Chen X L, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020J. Eur. Ceram. Soc. 40 3562

    [31]

    Yan F, Bai H R, Shi Y J, Ge G L, Zhou X F, Lin J F, Shen B, Zhai J W 2021Chem. Eng. J. 425 130669

    [32]

    Shi J P, Chen X L, Li X, Sun J, Sun C C, Pang F H, Zhou H F 2020J. Mater. Chem. C. 83784

    [33]

    Cao W J, Lin R J, Chen P F, Li F, Ge B H, Song D S, Zhang J, Cheng Z X, Wang C C 2022ACS Appl. Mater. Inter. 14 54051

    [34]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018J. Mater. Chem. C. 6 10693

    [35]

    Shen Y H, Wu L K, Zhao J H, Liu J J, Tang L M, Chen X Q, Li H H, Su Z, Zhang Y, Zhai J W, Pan Z B 2022Chem. Eng. J. 439 135762

    [36]

    Nie X R, He Y, Shi Q Q, Liang Y Q, Wei L L, Liang P F, Chao X L, Hu G X, Yang Z P 2023J. Adv. Dielect. 13 2242005

    [37]

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69127703(in Chinese) [杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红2020物理学报 69 127703]

    [38]

    Wei K, Duan J H, Zhou X F, Li G S, Zhang D, Li H 2023 ACS Appl. Mater. Inter. 15 48354

  • [1] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能. 物理学报, doi: 10.7498/aps.73.20240838
    [2] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生. 聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响. 物理学报, doi: 10.7498/aps.73.20230556
    [3] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型. 物理学报, doi: 10.7498/aps.70.20202019
    [4] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, doi: 10.7498/aps.69.20200288
    [5] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, doi: 10.7498/aps.69.20201031
    [6] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, doi: 10.7498/aps.69.20200540
    [7] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, doi: 10.7498/aps.69.20200592
    [8] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, doi: 10.7498/aps.69.20200213
    [9] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, doi: 10.7498/aps.68.20181944
    [10] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, doi: 10.7498/aps.68.20190562
    [11] 蔡家欢, 李平, 文玉梅, 鲍宜壮, 刘双建. 石英晶振的储能特性. 物理学报, doi: 10.7498/aps.65.104205
    [12] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应. 物理学报, doi: 10.7498/aps.63.047701
    [13] 曹万强, 舒明飞. 弛豫铁电体的键能与配位数模型. 物理学报, doi: 10.7498/aps.62.017701
    [14] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, doi: 10.7498/aps.62.038403
    [15] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, doi: 10.7498/aps.61.097701
    [16] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, doi: 10.7498/aps.61.197703
    [17] 尚勋忠, 陈威, 曹万强. 弛豫铁电体介电可调性的研究. 物理学报, doi: 10.7498/aps.61.217701
    [18] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能. 物理学报, doi: 10.7498/aps.58.4980
    [19] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, doi: 10.7498/aps.57.5962
    [20] 程忠阳, 姚熹, 张良莹. 弛豫型铁电体铌镁酸铅陶瓷的玻璃化行为研究. 物理学报, doi: 10.7498/aps.45.1026
计量
  • 文章访问数:  56
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-29

/

返回文章
返回