搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Q几何扰动光栅-波导结构中差频产生可调谐太赫兹辐射的数值研究

梁世杰 邹家祺 王文静 刘迪 霍燕燕 宁廷银

引用本文:
Citation:

Q几何扰动光栅-波导结构中差频产生可调谐太赫兹辐射的数值研究

梁世杰, 邹家祺, 王文静, 刘迪, 霍燕燕, 宁廷银
cstr: 32037.14.aps.74.20240854

Numerical study of tunable terahertz radiation from differential frequency generation in high-Q geometrically perturbed grating waveguide structures

LIANG Shijie, ZOU Jiaqi, WANG Wenjing, LIU Di, HUO Yanyan, NING Tingyin
cstr: 32037.14.aps.74.20240854
PDF
HTML
导出引用
  • 非线性差频产生(difference frequency generation, DFG)是实现太赫兹(terahertz, THz)源的重要方式之一. 利用微纳结构的DFG产生THz源可以不考虑相位匹配, 同时是器件小型化、可集成化的重要研究方向. 借助微纳结构的共振模式增强的局域电场在宽波段范围内实现高效的、可调谐的THz源是该领域的研究重点. 本文研究了宽波段范围内具有高Q因子的光栅-波导结构中的DFG产生高效可调谐的THz辐射. 理论上, 通过调控相邻光栅中其中一个的位置扰动, 从而实现光栅周期的加倍, 进而使得布里渊区发生折叠, 光线下方波导层中导模色散曲线折叠到光锥上方, 形成超高Q因子的导模共振, 可以实现在宽光谱范围内增强的THz 产生. 以硫化镉(cadmium sulfide, CdS)光栅-波导为例, 数值研究表明, 在两束基频光光强均为100 kW/cm2时, THz的转换效率可达到10–8 W –1的量级, 为相同厚度CdS薄膜转换效率的109倍. 通过改变两束基频光入射角, 可实现不同共振基频组合, 实现任意频率THz波产生, 从而实现了在宽光谱范围内高效可调谐的THz源.
    Nonlinear difference frequency generation (DFG) is a key mechanism for realizing terahertz (THz) sources. Utilization of DFG within micro- and nano-structures can circumvent the phase-matching limitations while supporting device miniaturization and integrability, thus the DFG is made a significant area of research. Enhancing the local electric fields through resonant modes in micro- and nano-structures has become a promising approach to achieving efficient and tunable THz sources across a broad wavelength range. In this work, the mechanism of DFG in high-Q-factor grating-waveguide structures for efficiently tuning THz radiation over a wide spectral range is investigated by using numerical simulations based on the finite element method (COMSOL Multiphysics). Theoretical analysis reveals that modulating the positional perturbation of one of the adjacent gratings effectively doubles the grating period, causing Brillouin zone to fold. This folding shifts the dispersion curve of the guided mode (GM) within the waveguide layer above the light cone, forming a guided mode resonance (GMR) with an ultra-high Q-factor, thereby significantly enhancing THz generation in a broad spectral range. Taking a cadmium sulfide (CdS) grating-waveguide structure for example, numerical simulations demonstrate that the THz conversion efficiency reaches an order of 10–8 W–1 when both fundamental frequency beams have an intensity of 100 kW/cm2, which is 109 times higher than the conversion efficiency of a CdS film of the same thickness. Moreover, the fundamental frequency resonance wavelength can be widely tuned by adjusting the incident angle. High-Q-factor resonance modes enable various fundamental frequency combinations by changing the incident angles of the two fundamental frequency beams, facilitating the generation of THz waves with arbitrary frequencies. This approach ultimately enables a highly efficient and tunable THz source in a wide spectral range, providing valuable insights for generating THz sources on micro- and nanophotonic platforms.
      通信作者: 宁廷银, ningtingyin@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174228)资助的课题.
      Corresponding author: NING Tingyin, ningtingyin@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174228).
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Huang Y, Shen Y C, Wang J Y 2023 Engineering 22 106Google Scholar

    [3]

    Koch M, Mittleman D M, Ornik J, Castro-Camus E 2023 Nat. Rev. Methods Primers 3 48Google Scholar

    [4]

    Rubano A, Mou S, Marrucci L, Paparo D 2019 ACS Photonics 6 1515Google Scholar

    [5]

    Li X R, Li J X, Li Y H, Ozcan A, Jarrahi M 2023 Light Sci. Appl. 12 233Google Scholar

    [6]

    Lewis R A 2014 J. Phys. D: Appl. Phys. 47 374001Google Scholar

    [7]

    Li H T, Lu Y L, He Z G, Jia Q K, Wang L 2016 J. Infrared, Millimeter, Terahertz Waves 37 649Google Scholar

    [8]

    Li Q, Li Y D, Ding S H, Wang Q 2012 J. Infrared Millim. Te. 33 548Google Scholar

    [9]

    曹俊诚, 韩英军 2024 中国激光 51 0114001Google Scholar

    Cao J C, Han Y J 2024 Chin. J. Lasers 51 0114001Google Scholar

    [10]

    Lai R K, Hwang J R, Norris T B, Whitaker J F 1998 Appl. Phys. Lett. 72 3100Google Scholar

    [11]

    Upadhya P C, Fan W H, Burnett A, Cunningham J, Davies A G, Linfield E H, Lloyd-Hughes J, Castro-Camus E, Johnston M B, Beere H 2007 Opt. Lett. 32 2297Google Scholar

    [12]

    Fan W H 2011 Chin. Opt. Lett. 9 110008Google Scholar

    [13]

    Bakunov M I, Bodrov S B 2014 J. Opt. Soc. Am. B 31 2549Google Scholar

    [14]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [15]

    黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩 2013 物理学报 62 120704Google Scholar

    Huang J G, Lu J X, Zhou W, Tong J C, Huang Z, Chu J H 2013 Acta Phys. Sin. 62 120704Google Scholar

    [16]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662Google Scholar

    [17]

    钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210Google Scholar

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210Google Scholar

    [18]

    Bakunov M I, Efimenko E S, Gorelov S D, Abramovsky N A, Bodrov S B 2020 Opt. Lett. 45 3533Google Scholar

    [19]

    Lu Y, Wang X, Miao L, Zuo D, Cheng Z 2011 Appl. Phys. B 103 387Google Scholar

    [20]

    Tochitsky S Y, Ralph J E, Sung C, Joshi C 2005 J. Appl. Phys. 98 026101Google Scholar

    [21]

    Zhong K, Yao J Q, Xu D G, Wang Z, Li Z Y, Zhang H Y, Wang P 2010 Opt. Commun. 283 3520Google Scholar

    [22]

    Jiang Y, Ding Y J 2007 Appl. Phys. Lett. 91 091108Google Scholar

    [23]

    Shi W, Ding Y J 2005 Opt. Lett. 30 1861Google Scholar

    [24]

    Brenier A 2018 Appl. Phys. B 124 194Google Scholar

    [25]

    Liu P X, Xu D G, Li J Q, Yan C, Li Z X, Wang Y Y, Yao J Q 2014 IEEE Photonics Technol. Lett. 26 494Google Scholar

    [26]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [27]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [28]

    Wu F, Qin M B, Xiao S Y 2022 J. Appl. Phys. 132 193101Google Scholar

    [29]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [30]

    Wu F, Qi X, Luo M, Liu T T, Xiao S Y 2023 Phys. Rev. B 108 165404Google Scholar

    [31]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [32]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [33]

    Sun K L, Wei H, Chen W J, Chen Y, Cai Y J, Qiu C W, Han Z H 2023 Phys. Rev. B 107 115415Google Scholar

    [34]

    Boyd R W 2020 Nonlinear Optics (London: Academic Press

    [35]

    Jiang H, Han Z H 2022 J. Phys. D: Appl. Phys. 55 385106Google Scholar

    [36]

    Sutherland R L 2003 Handbook of Nonlinear Optics (New York: Marcel Dekker

    [37]

    Amnon Yariv, Yeh P 1984 Optical Waves in Crystals (New York: Wiley

    [38]

    Lu J, Ding B Y, Huo Y Y, Ning T Y 2018 Opt. Commun. 415 146Google Scholar

    [39]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

  • 图 1  四部分光栅-波导结构和光配置示意图, 其中Λ是光栅-波导结构的周期, wg是 CdS 的宽度, wawb是空气的宽度, hghw 分别是光栅层和波导层的高度

    Fig. 1.  Schematic diagram of grating waveguide structure and light configuration. Λ is the periodicity of grating waveguide structure, wg is the width of CdS, wa and wb are the width of air, hg and hw are the height of grating layer and waveguide layer, respectively.

    图 2  (a) TE偏振光照射下周期为P = Λ/2的未扰动光栅-波导结构(绿点)和几何扰动δ = 0.1、周期为Λ的光栅结构-波导结构(红点和蓝点)的能带, 插图显示了箭头所示位置的GMR模式的电场(TE)分布; (b)波段A和波段B的Q因子与kx的关系; (c)波导层中TE0导波模式的色散关系(黑色实线), 以及kx = kx, i (i = –1, –2)在不同入射角θ下的色散关系, 分别为θ = 1° (酒红色虚线)、2° (红色虚线)、4° (绿色虚线)、6° (蓝色虚线)、8° (青色虚线)、10° (品红色虚线)

    Fig. 2.  (a) Band structure of the unperturbated grating-waveguide nanostructure of period P = Λ/2 (green dots) and geometrical perturbated δ = 0.1 grating-waveguide nanostructure of period Λ (red and blue dots). The inset shows the electric field (TE) distribution of the GMR mode at the kx as the arrow given. (b) Dependence of Q-factors of band A and B on kx. (c) Dispersion relations of the TE0 guide mode in the waveguide layer (black solid line), and kx = kx, i (i = –1, –2) under different angle of incidence θ = 1° (Wine red dashed line), 2° (red dashed lines), 4° (green dashed lines), 6° (blue dashed lines), 8° (cyan dashed lines), 10° (Magenta dashed line), respectively.

    图 3  (a)不同参数δ的光栅-波导结构在入射角θ = 6°时的透射光谱, 插图分别显示了 δ = 0.2和1.0 结构中共振模式处的Ez分布; (b) δ = 0.1 的光栅-波导结构的透射率与入射角的关系, 插图显示了θ = 6°结构中共振模式处的电场Ez分布; (c) 在TE偏振光照射下, 光栅-波导结构的Q因子与δ的关系, 插图显示了Q因子与δ–2之间的线性关系, 虚线为线性拟合; (d) δ = 0.1 时, 共振波长(黑色实线)和品质因数(黑色虚线)与入射角的关系

    Fig. 3.  (a) Transmittance spectra of grating waveguide structure of different parameter δ at the incidence angle θ = 6°. The inset shows the electric field Ez distribution at the resonance modes in the structure of δ = 0.2 and 1.0, respectively. (b) The dependence of transmittance of grating waveguide structure of δ = 0.1 on the incidence angle. The inset shows the electric field Ez distribution at the resonance modes in the structure of θ = 6°. (c) Dependence of Q-factor of the grating waveguide structure on δ under TE-polarized light irradiation. The inset shows the linear relationship between Q-factor and δ–2, and the dash line is a linear fitting. (d) The relation of resonance wavelength (solid black line) and quality factor (black dashed line) with the angle of incidence at the grating waveguide structure of δ = 0.1.

    图 4  不同入射角下DFG产生的THz转换效率与入射波长的关系, 其中入射角分别为(a) 1°和2°, (b) 3°和4°, (c) 5°和6°及(d) 7°和8°

    Fig. 4.  Generated THz conversion efficiency (CE) from DFG as a function of incident wavelength for different incidence angles. The incident angles are (a) 1° and 2°, (b) 3° and 4°, (c) 5° and 6°, and (d) 7° and 8°.

    图 5  DFG产生THz波功率与入射强度 I1I2 的关系

    Fig. 5.  Relationship of THz power via DFG with the incident intensities I1 and I2.

  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Huang Y, Shen Y C, Wang J Y 2023 Engineering 22 106Google Scholar

    [3]

    Koch M, Mittleman D M, Ornik J, Castro-Camus E 2023 Nat. Rev. Methods Primers 3 48Google Scholar

    [4]

    Rubano A, Mou S, Marrucci L, Paparo D 2019 ACS Photonics 6 1515Google Scholar

    [5]

    Li X R, Li J X, Li Y H, Ozcan A, Jarrahi M 2023 Light Sci. Appl. 12 233Google Scholar

    [6]

    Lewis R A 2014 J. Phys. D: Appl. Phys. 47 374001Google Scholar

    [7]

    Li H T, Lu Y L, He Z G, Jia Q K, Wang L 2016 J. Infrared, Millimeter, Terahertz Waves 37 649Google Scholar

    [8]

    Li Q, Li Y D, Ding S H, Wang Q 2012 J. Infrared Millim. Te. 33 548Google Scholar

    [9]

    曹俊诚, 韩英军 2024 中国激光 51 0114001Google Scholar

    Cao J C, Han Y J 2024 Chin. J. Lasers 51 0114001Google Scholar

    [10]

    Lai R K, Hwang J R, Norris T B, Whitaker J F 1998 Appl. Phys. Lett. 72 3100Google Scholar

    [11]

    Upadhya P C, Fan W H, Burnett A, Cunningham J, Davies A G, Linfield E H, Lloyd-Hughes J, Castro-Camus E, Johnston M B, Beere H 2007 Opt. Lett. 32 2297Google Scholar

    [12]

    Fan W H 2011 Chin. Opt. Lett. 9 110008Google Scholar

    [13]

    Bakunov M I, Bodrov S B 2014 J. Opt. Soc. Am. B 31 2549Google Scholar

    [14]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [15]

    黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩 2013 物理学报 62 120704Google Scholar

    Huang J G, Lu J X, Zhou W, Tong J C, Huang Z, Chu J H 2013 Acta Phys. Sin. 62 120704Google Scholar

    [16]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662Google Scholar

    [17]

    钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210Google Scholar

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210Google Scholar

    [18]

    Bakunov M I, Efimenko E S, Gorelov S D, Abramovsky N A, Bodrov S B 2020 Opt. Lett. 45 3533Google Scholar

    [19]

    Lu Y, Wang X, Miao L, Zuo D, Cheng Z 2011 Appl. Phys. B 103 387Google Scholar

    [20]

    Tochitsky S Y, Ralph J E, Sung C, Joshi C 2005 J. Appl. Phys. 98 026101Google Scholar

    [21]

    Zhong K, Yao J Q, Xu D G, Wang Z, Li Z Y, Zhang H Y, Wang P 2010 Opt. Commun. 283 3520Google Scholar

    [22]

    Jiang Y, Ding Y J 2007 Appl. Phys. Lett. 91 091108Google Scholar

    [23]

    Shi W, Ding Y J 2005 Opt. Lett. 30 1861Google Scholar

    [24]

    Brenier A 2018 Appl. Phys. B 124 194Google Scholar

    [25]

    Liu P X, Xu D G, Li J Q, Yan C, Li Z X, Wang Y Y, Yao J Q 2014 IEEE Photonics Technol. Lett. 26 494Google Scholar

    [26]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [27]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [28]

    Wu F, Qin M B, Xiao S Y 2022 J. Appl. Phys. 132 193101Google Scholar

    [29]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [30]

    Wu F, Qi X, Luo M, Liu T T, Xiao S Y 2023 Phys. Rev. B 108 165404Google Scholar

    [31]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [32]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [33]

    Sun K L, Wei H, Chen W J, Chen Y, Cai Y J, Qiu C W, Han Z H 2023 Phys. Rev. B 107 115415Google Scholar

    [34]

    Boyd R W 2020 Nonlinear Optics (London: Academic Press

    [35]

    Jiang H, Han Z H 2022 J. Phys. D: Appl. Phys. 55 385106Google Scholar

    [36]

    Sutherland R L 2003 Handbook of Nonlinear Optics (New York: Marcel Dekker

    [37]

    Amnon Yariv, Yeh P 1984 Optical Waves in Crystals (New York: Wiley

    [38]

    Lu J, Ding B Y, Huo Y Y, Ning T Y 2018 Opt. Commun. 415 146Google Scholar

    [39]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

  • [1] 王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨. 基于DAST晶体的连续太赫兹差频辐射源研究. 物理学报, 2025, 74(3): 034201. doi: 10.7498/aps.74.20241349
    [2] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [3] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [4] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [5] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜. 自旋电子太赫兹源研究进展. 物理学报, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [6] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [7] 左剑, 张亮亮, 巩辰, 张存林. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展. 物理学报, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [8] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [9] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [10] 桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟. 带虚设层的抗反射结构导模共振滤波器设计与分析. 物理学报, 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [11] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [12] 马凤英, 陈明, 刘晓莉, 刘建立, 池泉, 杜艳丽, 郭茂田, 袁斌. 太赫兹波段微腔器件的设计及其特性研究. 物理学报, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [13] 刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲. 基于场致发射阴极阵列的太赫兹源的物理机理研究. 物理学报, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [14] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射. 物理学报, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [15] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [16] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 物理学报, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [17] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [18] 麻健勇, 刘世杰, 魏朝阳, 晋云霞, 赵元安, 邵建达, 范正修. 可见光波段双层浮雕型导模共振滤波器设计与分析. 物理学报, 2008, 57(7): 4195-4201. doi: 10.7498/aps.57.4195
    [19] 麻健勇, 刘世杰, 魏朝阳, 许 程, 晋云霞, 赵元安, 邵建达, 范正修. 反射型导模共振滤波器设计. 物理学报, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [20] 周传宏, 王磊, 聂娅, 王植恒. 介质光栅导模共振耦合波分析. 物理学报, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
计量
  • 文章访问数:  246
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 修回日期:  2024-12-09
  • 上网日期:  2024-12-25

/

返回文章
返回