搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳秒光脉冲激发的里德伯原子光谱

蔡婷 何军 刘智慧 刘瑶 苏楠 史鹏飞 靳刚 成永杰 王军民

引用本文:
Citation:

基于纳秒光脉冲激发的里德伯原子光谱

蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民
cstr: 32037.14.aps.74.20240900

Rydberg atomic spectroscopy based on nanosecond pulsed laser excitation

CAI Ting, HE Jun, LIU Zhihui, LIU Yao, SU Nan, SHI Pengfei, JIN Gang, CHENG Yongjie, WANG Junmin
cstr: 32037.14.aps.74.20240900
PDF
HTML
导出引用
  • 通过852 nm连续激光和509 nm脉冲激光级联激发, 在室温铯原子气室中实现了里德伯原子电磁诱导透明(EIT)光谱. 509 nm纳秒激光脉冲功率~173 W, 脉冲重复频率在300 kHz—100 MHz范围连续可调, 脉宽在1—100 ns范围连续可调. 实验研究了里德伯EIT光谱与509 nm脉冲激光参数的关系. 时域周期脉冲光在频域上等效为相干频率梳, 通过激光脉冲参数调节实现了可控速度群原子的里德伯态激发. 基于光脉冲激发的原子干涉光谱具有高信噪比, 在量子传感和量子模拟领域有潜在的应用价值.
    Through the cascade excitation of 852-nm continuous-wave (CW) laser and 509-nm nanosecond pulsed laser, the electromagnetically-induced transparency (EIT) spectroscopic signals of ladder-type three-level cesium atoms with Rydberg state are obtained by using a room-temperature cesium vapor cell. The power of 509-nm pulsed laser beam is ~176 W, while the pulse repetition frequency ranges from 300 kHz to 100 MHz and can be continuously adjusted. The laser pulse duration runs from 1 to 100 ns and can be continuously adjusted. The relationship between Rydberg EIT spectroscopic signals and 509-nm nanosecond pulsed laser parameters is investigated experimentally. By changing the pulse repetition frequency and the pulse duration of the 509-nm nanosecond pulsed laser, the comb-like Rydberg atomic spectrum is obtained by using a room-temperature cesium vapor cell. Within a certain range of repetition frequency and pulse duration, the envelope of spectral lines shows a regular pattern, and the spacing between the transmission peaks is consistent with the pulse repetition frequency. By changing the 509-nm laser pulse repetition frequency and pulse duration, atoms with the specific velocity group can be excited to Rydberg state. Reducing the repetition frequency of the 509-nm pulsed coupling laser can further increase the number of atoms in the Rydberg state in comparison with the case of finite velocity group pumping of cesium atoms by a continuous-wave laser. When the repetition frequency of the 509-nm pulsed laser approaches the EIT linewidth, the number of cesium Rydberg atoms can be increased by up to 10 times. In the parameter optimization process, the dynamic characteristics of pulsed excitation in multi-level atoms, as well as the interaction characteristics between arbitrarily shaped laser pulses and multi-level atomic systems, should be considered. Pulsed laser pumping can achieve the interaction between the laser field and atomic group with a specific velocity, and its developed atomic frequency comb spectra can be used for electric and magnetic field measurements. The multi-peak structure of the spectrum can be used to more accurately determine the intensity, frequency, and phase of the microwave electric field by measuring spectral variations. This high-sensitivity and high-resolution measurement capability is crucial for precisely measuring microwave electric fields. The pulsed coupling laser can excite atoms in a specific velocity group to the Rydberg state. High-density Rydberg atoms can improve the signal-to-noise ratio of the measured spectrum, which has potential applications in quantum sensing and quantum measurement based on Rydberg atoms.
      通信作者: 何军, hejun@sxu.edu.cn ; 成永杰, cyj229@163.com ; 王军民, wwjjmm@sxu.edu.cn
      Corresponding author: HE Jun, hejun@sxu.edu.cn ; CHENG Yongjie, cyj229@163.com ; WANG Junmin, wwjjmm@sxu.edu.cn
    [1]

    Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [2]

    周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍 2023 物理学报 72 045204Google Scholar

    Zhou F, Jia F D, Liu X B, Zhang J, Xie F, Zhong Z P 2023 Acta Phys. Sin. 72 045204Google Scholar

    [3]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar

    [4]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [5]

    Barredo D, Kubler H, Daschner R, Löw R, Pfau T 2013 Phys. Rev. Lett. 110 123002Google Scholar

    [6]

    王军民, 白建东, 王杰英, 刘硕, 杨保东, 何军 2019 中国光学 12 701Google Scholar

    Wang J M, Bai J D, Wang J Y, Liu S, Yang B D, He J 2019 Chin. Opt. 12 701Google Scholar

    [7]

    Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M 2020 Chin. Phys. B 29 033201Google Scholar

    [8]

    Fan J B, He Y H, Jiao Y C, Hao L P, Zhao J M, Jia S T 2021 Chin. Phys. B 30 034207Google Scholar

    [9]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [10]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821Google Scholar

    [11]

    Kübler H, Shaffer J P, Baluktsian T, Löw R, Pfau T 2010 Nat. Photonics 4 112Google Scholar

    [12]

    Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kübler H, Löw R, Pfau T 2011 Phys. Rev. Lett. 107 243001Google Scholar

    [13]

    Wang Y N, Meng Y L, Wan J Y, Yu M Y, Wang X, Xiao L, Cheng H D, Liu L 2018 Phys. Rev. A 97 023421Google Scholar

    [14]

    Li R J, Perrella C, Luiten A 2022 Opt. Express 30 31752Google Scholar

    [15]

    Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001Google Scholar

    [16]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [17]

    Schütz J, Martin A, Laschinger S, Birkl G 2022 J. Phys. B: At. Mol. Opt. Phys. 55 234004Google Scholar

    [18]

    Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar

    [19]

    Kocharovskaya O A, Khanin Y I 1986 Sov. Phys. JETP 63 945

    [20]

    Felinto D, Bosco C A C, Acioli L H, Vianna S S 2003 Opt. Commun. 215 69Google Scholar

    [21]

    Marian A, Stowe M C, Lawall J R, Felinto D, Ye J 2004 Science 306 2063Google Scholar

    [22]

    Aumiler D, Ban T, Skenderović H, Pichler G 2005 Phys. Rev. Lett. 95 233001Google Scholar

    [23]

    Felinto D, López C E E 2009 Phys. Rev. A 80 013419Google Scholar

    [24]

    刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民 2023 物理学报 72 060303Google Scholar

    Liu Y, He J, Su N, Cai T, Liu Z H, Diao W T, Wang J M 2023 Acta Phys. Sin. 72 060303Google Scholar

    [25]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar

    [26]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar

  • 图 1  (a)铯原子里德伯EIT阶梯型能级图, 包括基态$\left| 1 \right\rangle $、中间态$\left| {2} \right\rangle $和里德伯态$\left| {3} \right\rangle $, 852 nm的弱探测激光束以拉比频率${\varOmega _{\text{p}}}$耦合态$\left| 1 \right\rangle $和态$\left| {2} \right\rangle $, 而509 nm的强耦合激光束以拉比频率${\varOmega _{\text{c}}}$耦合态$\left| {2} \right\rangle $和态$\left| {3} \right\rangle $, ${\varDelta _{\text{p}}}$(${\varDelta _{\text{c}}}$)是探测激光束(耦合激光束)的频率失谐量. (b)阶梯型多能级结构理论模拟EIT光谱, 横坐标为耦合光失谐, 纵坐标为EIT透射信号强度

    Fig. 1.  (a) Schematic of a ladder-type three-level cesium atomic system with the ground state $\left| 1 \right\rangle $, the intermediate state $\left| {2} \right\rangle $, and Rydberg state $\left| {3} \right\rangle $, the 852 nm weak probe laser beam couples states $\left| 1 \right\rangle $ and $\left| {2} \right\rangle $ with Rabi frequency ${\varOmega _{\text{p}}}$, while the 509 nm strong coupling laser couples states $\left| {2} \right\rangle $ and $\left| {3} \right\rangle $ with Rabi frequency ${\varOmega _{\text{c}}}$, ${\varDelta _{\text{p}}}$(${\varDelta _{\text{c}}}$) is the frequency detuning of the probe laser beam (the coupling laser beam). (b) Transmission spectram of the probe laser beam versus the coupling laser detuning, the abscissa represents the detuning of the coupling light, while the ordinate represents the intensity of the EIT transmission signal.

    图 2  耦合光为脉冲激光的阶梯型多能级结构理论模拟EIT光谱, 横坐标为耦合光失谐, 纵坐标为归一化的EIT透射信号强度

    Fig. 2.  Transmission spectra of the probe laser beam versus the nanosecond pulsed coupling laser detuning, the abscissa represents the detuning of the coupling light, while the ordinate represents the intensity of the EIT transmission signal.

    图 3  铯原子光谱实验装置图, 其中OI为光隔离器; YDFA为掺镱光纤放大器; λ/2为半波片; PBS为偏振分光棱镜; L为透镜; DM2, DM4为509 nm高反射率(HR)和852 nm高透射率(HT)双色镜; DM1, DM3为509 nm高透射率(HT)和852 nm高反射率(HR)双色镜; PD为光电探测器; PPLN为周期极化铌酸锂晶体; M为509 nm高反镜; SAS为饱和吸收光谱装置; Dump为光学垃圾堆

    Fig. 3.  Experimental set-up, where OI is optical isolator; YDFA is ytterbium-doped fiber amplifier; λ/2 is half-wave plate; PBS is polarization beam splitter cube; L is Lens; DM2 and DM4 are 509 nm high reflectivity (HR) and 852 nm high transmissivity (HT) dichroic mirrors; DM1 and DM3 are 509 nm high transmissivity (HT) and 852 nm high reflectivity (HR) dichroic mirrors; PD is photodiode; PPLN is periodically poled lithium niobate crystals; M is 509 nm high reflectivity mirror; SAS is cesium atomic saturation absorption spectroscopic device; Dump is optical dump.

    图 4  铯里德伯原子EIT光谱 (a) 连续509 nm耦合光扫描; (b) 脉冲509 nm耦合光扫描

    Fig. 4.  EIT spectra of cesium Rydberg atoms: (a) The continuous-wave 509 nm coupling laser beam is frequency scanned; (b) the pulsed 509 nm coupling laser beam is frequency scanned.

    图 5  不同重复频率下, 脉宽为(a) 5 ns和(b) 10 ns的 EIT信号光谱图

    Fig. 5.  EIT spectra of cesium Rydberg atoms for the pulse duration is (a) 5 ns and (b) 10 ns.

    图 6  EIT信号光谱图 (a) 重复频率为20 MHz, 脉宽分别为5 ns (灰色)、10 ns (红色)、15 ns (蓝色)、20 ns (绿色)、25 ns (紫色); (b) 重复频率为50 MHz, 脉宽分别为4 ns (灰色)、6 ns (红色)、8 ns (蓝色)、10 ns (绿色)

    Fig. 6.  EIT spectra of cesium Rydberg atoms: (a) Repetition frequency is 20 MHz, while the pulse duration is 5 ns (gray), 10 ns (red), 15 ns (blue), 20 ns (green), and 25 ns (purple), respectively; (b) the repetition frequency is 50 MHz, while the pulse duration is 4 ns (gray), 6 ns (red), 8 ns (blue), and 10 ns (green), respectively.

  • [1]

    Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [2]

    周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍 2023 物理学报 72 045204Google Scholar

    Zhou F, Jia F D, Liu X B, Zhang J, Xie F, Zhong Z P 2023 Acta Phys. Sin. 72 045204Google Scholar

    [3]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar

    [4]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [5]

    Barredo D, Kubler H, Daschner R, Löw R, Pfau T 2013 Phys. Rev. Lett. 110 123002Google Scholar

    [6]

    王军民, 白建东, 王杰英, 刘硕, 杨保东, 何军 2019 中国光学 12 701Google Scholar

    Wang J M, Bai J D, Wang J Y, Liu S, Yang B D, He J 2019 Chin. Opt. 12 701Google Scholar

    [7]

    Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M 2020 Chin. Phys. B 29 033201Google Scholar

    [8]

    Fan J B, He Y H, Jiao Y C, Hao L P, Zhao J M, Jia S T 2021 Chin. Phys. B 30 034207Google Scholar

    [9]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [10]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821Google Scholar

    [11]

    Kübler H, Shaffer J P, Baluktsian T, Löw R, Pfau T 2010 Nat. Photonics 4 112Google Scholar

    [12]

    Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kübler H, Löw R, Pfau T 2011 Phys. Rev. Lett. 107 243001Google Scholar

    [13]

    Wang Y N, Meng Y L, Wan J Y, Yu M Y, Wang X, Xiao L, Cheng H D, Liu L 2018 Phys. Rev. A 97 023421Google Scholar

    [14]

    Li R J, Perrella C, Luiten A 2022 Opt. Express 30 31752Google Scholar

    [15]

    Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001Google Scholar

    [16]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [17]

    Schütz J, Martin A, Laschinger S, Birkl G 2022 J. Phys. B: At. Mol. Opt. Phys. 55 234004Google Scholar

    [18]

    Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar

    [19]

    Kocharovskaya O A, Khanin Y I 1986 Sov. Phys. JETP 63 945

    [20]

    Felinto D, Bosco C A C, Acioli L H, Vianna S S 2003 Opt. Commun. 215 69Google Scholar

    [21]

    Marian A, Stowe M C, Lawall J R, Felinto D, Ye J 2004 Science 306 2063Google Scholar

    [22]

    Aumiler D, Ban T, Skenderović H, Pichler G 2005 Phys. Rev. Lett. 95 233001Google Scholar

    [23]

    Felinto D, López C E E 2009 Phys. Rev. A 80 013419Google Scholar

    [24]

    刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民 2023 物理学报 72 060303Google Scholar

    Liu Y, He J, Su N, Cai T, Liu Z H, Diao W T, Wang J M 2023 Acta Phys. Sin. 72 060303Google Scholar

    [25]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar

    [26]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar

  • [1] 刘笑宏, 滕玉勤, 李婉钰, 张彩霞, 黄巍. 基于原子超外差探测的太赫兹测厚. 物理学报, 2025, 74(2): 020701. doi: 10.7498/aps.74.20241542
    [2] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [3] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [4] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [5] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [6] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [7] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [8] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [9] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [10] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [11] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [12] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [13] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [14] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [15] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [16] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [17] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [18] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [19] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量. 物理学报, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [20] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
计量
  • 文章访问数:  219
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 修回日期:  2024-11-07
  • 上网日期:  2024-11-27
  • 刊出日期:  2025-01-05

/

返回文章
返回