-
Through the cascade excitation of 852-nm continuous-wave (CW) laser and 509-nm nanosecond pulsed laser, the electromagnetically-induced transparency (EIT) spectroscopic signals of ladder-type three-level cesium atoms with Rydberg state are obtained by using a room-temperature cesium vapor cell. The power of 509-nm pulsed laser beam is ~176 W, while the pulse repetition frequency ranges from 300 kHz to 100 MHz and can be continuously adjusted. The laser pulse duration runs from 1 to 100 ns and can be continuously adjusted. The relationship between Rydberg EIT spectroscopic signals and 509-nm nanosecond pulsed laser parameters is investigated experimentally. By changing the pulse repetition frequency and the pulse duration of the 509-nm nanosecond pulsed laser, the comb-like Rydberg atomic spectrum is obtained by using a room-temperature cesium vapor cell. Within a certain range of repetition frequency and pulse duration, the envelope of spectral lines shows a regular pattern, and the spacing between the transmission peaks is consistent with the pulse repetition frequency. By changing the 509-nm laser pulse repetition frequency and pulse duration, atoms with the specific velocity group can be excited to Rydberg state. Reducing the repetition frequency of the 509-nm pulsed coupling laser can further increase the number of atoms in the Rydberg state in comparison with the case of finite velocity group pumping of cesium atoms by a continuous-wave laser. When the repetition frequency of the 509-nm pulsed laser approaches the EIT linewidth, the number of cesium Rydberg atoms can be increased by up to 10 times. In the parameter optimization process, the dynamic characteristics of pulsed excitation in multi-level atoms, as well as the interaction characteristics between arbitrarily shaped laser pulses and multi-level atomic systems, should be considered. Pulsed laser pumping can achieve the interaction between the laser field and atomic group with a specific velocity, and its developed atomic frequency comb spectra can be used for electric and magnetic field measurements. The multi-peak structure of the spectrum can be used to more accurately determine the intensity, frequency, and phase of the microwave electric field by measuring spectral variations. This high-sensitivity and high-resolution measurement capability is crucial for precisely measuring microwave electric fields. The pulsed coupling laser can excite atoms in a specific velocity group to the Rydberg state. High-density Rydberg atoms can improve the signal-to-noise ratio of the measured spectrum, which has potential applications in quantum sensing and quantum measurement based on Rydberg atoms. -
Keywords:
- Rydberg atoms /
- nanosecond pulse laser excitation /
- electromagnetically induced transparency spectroscopy /
- velocity selection spectroscopy
[1] Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar
[2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍 2023 物理学报 72 045204Google Scholar
Zhou F, Jia F D, Liu X B, Zhang J, Xie F, Zhong Z P 2023 Acta Phys. Sin. 72 045204Google Scholar
[3] Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar
[4] Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar
[5] Barredo D, Kubler H, Daschner R, Löw R, Pfau T 2013 Phys. Rev. Lett. 110 123002Google Scholar
[6] 王军民, 白建东, 王杰英, 刘硕, 杨保东, 何军 2019 中国光学 12 701Google Scholar
Wang J M, Bai J D, Wang J Y, Liu S, Yang B D, He J 2019 Chin. Opt. 12 701Google Scholar
[7] Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M 2020 Chin. Phys. B 29 033201Google Scholar
[8] Fan J B, He Y H, Jiao Y C, Hao L P, Zhao J M, Jia S T 2021 Chin. Phys. B 30 034207Google Scholar
[9] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar
[10] Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821Google Scholar
[11] Kübler H, Shaffer J P, Baluktsian T, Löw R, Pfau T 2010 Nat. Photonics 4 112Google Scholar
[12] Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kübler H, Löw R, Pfau T 2011 Phys. Rev. Lett. 107 243001Google Scholar
[13] Wang Y N, Meng Y L, Wan J Y, Yu M Y, Wang X, Xiao L, Cheng H D, Liu L 2018 Phys. Rev. A 97 023421Google Scholar
[14] Li R J, Perrella C, Luiten A 2022 Opt. Express 30 31752Google Scholar
[15] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001Google Scholar
[16] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar
[17] Schütz J, Martin A, Laschinger S, Birkl G 2022 J. Phys. B: At. Mol. Opt. Phys. 55 234004Google Scholar
[18] Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar
[19] Kocharovskaya O A, Khanin Y I 1986 Sov. Phys. JETP 63 945
[20] Felinto D, Bosco C A C, Acioli L H, Vianna S S 2003 Opt. Commun. 215 69Google Scholar
[21] Marian A, Stowe M C, Lawall J R, Felinto D, Ye J 2004 Science 306 2063Google Scholar
[22] Aumiler D, Ban T, Skenderović H, Pichler G 2005 Phys. Rev. Lett. 95 233001Google Scholar
[23] Felinto D, López C E E 2009 Phys. Rev. A 80 013419Google Scholar
[24] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民 2023 物理学报 72 060303Google Scholar
Liu Y, He J, Su N, Cai T, Liu Z H, Diao W T, Wang J M 2023 Acta Phys. Sin. 72 060303Google Scholar
[25] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar
[26] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar
-
图 1 (a)铯原子里德伯EIT阶梯型能级图, 包括基态$\left| 1 \right\rangle $、中间态$\left| {2} \right\rangle $和里德伯态$\left| {3} \right\rangle $, 852 nm的弱探测激光束以拉比频率${\varOmega _{\text{p}}}$耦合态$\left| 1 \right\rangle $和态$\left| {2} \right\rangle $, 而509 nm的强耦合激光束以拉比频率${\varOmega _{\text{c}}}$耦合态$\left| {2} \right\rangle $和态$\left| {3} \right\rangle $, ${\varDelta _{\text{p}}}$(${\varDelta _{\text{c}}}$)是探测激光束(耦合激光束)的频率失谐量. (b)阶梯型多能级结构理论模拟EIT光谱, 横坐标为耦合光失谐, 纵坐标为EIT透射信号强度
Fig. 1. (a) Schematic of a ladder-type three-level cesium atomic system with the ground state $\left| 1 \right\rangle $, the intermediate state $\left| {2} \right\rangle $, and Rydberg state $\left| {3} \right\rangle $, the 852 nm weak probe laser beam couples states $\left| 1 \right\rangle $ and $\left| {2} \right\rangle $ with Rabi frequency ${\varOmega _{\text{p}}}$, while the 509 nm strong coupling laser couples states $\left| {2} \right\rangle $ and $\left| {3} \right\rangle $ with Rabi frequency ${\varOmega _{\text{c}}}$, ${\varDelta _{\text{p}}}$(${\varDelta _{\text{c}}}$) is the frequency detuning of the probe laser beam (the coupling laser beam). (b) Transmission spectram of the probe laser beam versus the coupling laser detuning, the abscissa represents the detuning of the coupling light, while the ordinate represents the intensity of the EIT transmission signal.
图 2 耦合光为脉冲激光的阶梯型多能级结构理论模拟EIT光谱, 横坐标为耦合光失谐, 纵坐标为归一化的EIT透射信号强度
Fig. 2. Transmission spectra of the probe laser beam versus the nanosecond pulsed coupling laser detuning, the abscissa represents the detuning of the coupling light, while the ordinate represents the intensity of the EIT transmission signal.
图 3 铯原子光谱实验装置图, 其中OI为光隔离器; YDFA为掺镱光纤放大器; λ/2为半波片; PBS为偏振分光棱镜; L为透镜; DM2, DM4为509 nm高反射率(HR)和852 nm高透射率(HT)双色镜; DM1, DM3为509 nm高透射率(HT)和852 nm高反射率(HR)双色镜; PD为光电探测器; PPLN为周期极化铌酸锂晶体; M为509 nm高反镜; SAS为饱和吸收光谱装置; Dump为光学垃圾堆
Fig. 3. Experimental set-up, where OI is optical isolator; YDFA is ytterbium-doped fiber amplifier; λ/2 is half-wave plate; PBS is polarization beam splitter cube; L is Lens; DM2 and DM4 are 509 nm high reflectivity (HR) and 852 nm high transmissivity (HT) dichroic mirrors; DM1 and DM3 are 509 nm high transmissivity (HT) and 852 nm high reflectivity (HR) dichroic mirrors; PD is photodiode; PPLN is periodically poled lithium niobate crystals; M is 509 nm high reflectivity mirror; SAS is cesium atomic saturation absorption spectroscopic device; Dump is optical dump.
图 6 EIT信号光谱图 (a) 重复频率为20 MHz, 脉宽分别为5 ns (灰色)、10 ns (红色)、15 ns (蓝色)、20 ns (绿色)、25 ns (紫色); (b) 重复频率为50 MHz, 脉宽分别为4 ns (灰色)、6 ns (红色)、8 ns (蓝色)、10 ns (绿色)
Fig. 6. EIT spectra of cesium Rydberg atoms: (a) Repetition frequency is 20 MHz, while the pulse duration is 5 ns (gray), 10 ns (red), 15 ns (blue), 20 ns (green), and 25 ns (purple), respectively; (b) the repetition frequency is 50 MHz, while the pulse duration is 4 ns (gray), 6 ns (red), 8 ns (blue), and 10 ns (green), respectively.
-
[1] Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar
[2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍 2023 物理学报 72 045204Google Scholar
Zhou F, Jia F D, Liu X B, Zhang J, Xie F, Zhong Z P 2023 Acta Phys. Sin. 72 045204Google Scholar
[3] Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar
[4] Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar
[5] Barredo D, Kubler H, Daschner R, Löw R, Pfau T 2013 Phys. Rev. Lett. 110 123002Google Scholar
[6] 王军民, 白建东, 王杰英, 刘硕, 杨保东, 何军 2019 中国光学 12 701Google Scholar
Wang J M, Bai J D, Wang J Y, Liu S, Yang B D, He J 2019 Chin. Opt. 12 701Google Scholar
[7] Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M 2020 Chin. Phys. B 29 033201Google Scholar
[8] Fan J B, He Y H, Jiao Y C, Hao L P, Zhao J M, Jia S T 2021 Chin. Phys. B 30 034207Google Scholar
[9] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar
[10] Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821Google Scholar
[11] Kübler H, Shaffer J P, Baluktsian T, Löw R, Pfau T 2010 Nat. Photonics 4 112Google Scholar
[12] Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kübler H, Löw R, Pfau T 2011 Phys. Rev. Lett. 107 243001Google Scholar
[13] Wang Y N, Meng Y L, Wan J Y, Yu M Y, Wang X, Xiao L, Cheng H D, Liu L 2018 Phys. Rev. A 97 023421Google Scholar
[14] Li R J, Perrella C, Luiten A 2022 Opt. Express 30 31752Google Scholar
[15] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B, Holloway C L 2021 Appl. Phys. Lett. 119 214001Google Scholar
[16] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar
[17] Schütz J, Martin A, Laschinger S, Birkl G 2022 J. Phys. B: At. Mol. Opt. Phys. 55 234004Google Scholar
[18] Harris S E 1989 Phys. Rev. Lett. 62 1033Google Scholar
[19] Kocharovskaya O A, Khanin Y I 1986 Sov. Phys. JETP 63 945
[20] Felinto D, Bosco C A C, Acioli L H, Vianna S S 2003 Opt. Commun. 215 69Google Scholar
[21] Marian A, Stowe M C, Lawall J R, Felinto D, Ye J 2004 Science 306 2063Google Scholar
[22] Aumiler D, Ban T, Skenderović H, Pichler G 2005 Phys. Rev. Lett. 95 233001Google Scholar
[23] Felinto D, López C E E 2009 Phys. Rev. A 80 013419Google Scholar
[24] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民 2023 物理学报 72 060303Google Scholar
Liu Y, He J, Su N, Cai T, Liu Z H, Diao W T, Wang J M 2023 Acta Phys. Sin. 72 060303Google Scholar
[25] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar
[26] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar
计量
- 文章访问数: 217
- PDF下载量: 13
- 被引次数: 0