-
Shockley-Queisser (S-Q)模型定义的理想太阳能电池是光伏器件分析的一个重要里程碑. 异质结太阳电池是光伏热门研究领域之一. 本文基于光伏电池S-Q模型基础, 针对异质结太阳电池空间势垒区能带不连续对光生载流子的输运存在的阻碍作用, 修订S-Q模型中的假设, 引入空间势垒区有限迁移率假设, 推导异质结太阳电池光电转换方程, 计算光电转换效率. 5780 K黑体辐射、电池温度300 K条件下计算结果表明最高转换效率约为31%; 异质结太阳能电池的开路电压可以超过窄带隙半导体的带隙限制; 高迁移率、低串阻条件下, 降低宽带隙半导体的光子吸收数目、增加窄带隙半导体光子吸收数目, 异质结太阳电池存在效率损失.
-
关键词:
- Shockley-Queisser模型 /
- 异质结太阳电池 /
- 迁移率 /
- 吸收率
The ideal solar cell defined by the Shockley-Queisser (S-Q) theory is an important milestone in the analysis of photovoltaic devices based on some assumptions. One or more of the above assumptions are gradually avoided, and even exceed or approach the S-Q efficiency limit, so the development and improvement of S-Q theory is necessary. Heterojunction solar cells are one of the hot research fields in photovoltaics. In order to address the hindering effect of energy band discontinuity in the spatial barrier region of heterojunction solar cells on the transport of photogenerated carriers, the assumptions of S-Q theory based on the original S-Q theory of photovoltaic cells are revised in this work. The carrier mobility in the barrier region is assumed to be finite, and the infinite mobility in the S-Q model is abandoned. But the mobility in the N-type and the P-type neutral region are still infinite. The lumped relationship between carrier mobility and resistance in the barrier region is derived. Therefore, the physical process of charge transport is described in detail in this paper based on the continuity equation for semiconductors by considering the effect of absorption coefficients to prevent the quasi-Fermi level from crossing the conduction or valence band. Thus, the revised S-Q theoretical limit model of heterojunction solar cell is constructed. The diode equivalent circuit diagram is deduced and the photovoltaic conversion efficiency is evaluated eventually. The loss effects of charge transmission and band gap mismatch on the performance of heterojunction solar cells are analyzed in detail. The calculation results under the condition of 5780 K blackbody radiation and 300 K cell temperature with N-type wide bandgap (EH) and P-type narrow bandgap (EL) materials show that the highest conversion efficiency is about 31% with a hole resistance of 0.01 Ω·cm2 and electronic resistance of 0.01 Ω·cm2. The calculations show that the electronic resistance has a more negative and complicated effect on solar cell performance than hole resistance. When Re and Rh are small, the best conversion efficiency is in a range between 1.22 eV and 1.32 eV of the narrow bandgap. Increasing Re can increase the open circuit voltage of solar cells, but there are losses in efficiency and fill factor of solar cells. When Re is large enough, for example, Re = 1000 Ω·cm2, the open circuit voltage of solar cells is not limited by EL and can exceed the bandgap limit of the narrow bandgap material. Increasing Rh will also reduce efficiency, but the effect is not so great as Re. The change of absorption coefficient can cause the photogenerated current of L and H branches to change, and the radiation recombination losses of both branches can be regulated.-
Keywords:
- Shockley-Queisser model /
- heterojunction solar cell /
- carrier mobility /
- absorptivity
[1] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第28页
Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) p28
[2] Li Y, Ru X N, Yang M, et al. 2024 Nature 626 105Google Scholar
[3] Wang M H, Shi Y 2024 Sci. China Chem. 67 1117Google Scholar
[4] Wang T Y, Deng W Q, Cao J P, Yan F 2023 Adv. Energy Mater. 13 2201436Google Scholar
[5] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar
Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar
[6] 王傲 2021 博士学位论文(南京: 南京理工大学)
Wang A 2021 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[7] Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218Google Scholar
[8] Zhao Y F, Procel P, Han C, et al. 2023 Sol. Energy Mater. Sol. Cells 258 112413Google Scholar
[9] Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar
[10] Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023 Sci. China Mater. 66 4891Google Scholar
[11] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar
[12] Ahmad F, Lakhtakia A, Monk P B 2020 Appl. Phys. Lett. 117 033901Google Scholar
[13] Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019 Nat. Photonics 13 501Google Scholar
[14] Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021 Nat. Photonics 15 165Google Scholar
[15] Markvart T 2021 Nat. Photonics 15 163Google Scholar
[16] Marti A 2019 IEEE J. Photovolt. 9 1590Google Scholar
[17] 熊超, 陈磊, 袁洪春, 姚若河 2013 太阳能学报 34 746
Xiong C, Chen L, Yuan H C, Yao R H 2013 Acta Energ. Sol. Sin. 34 746
[18] Anderson R L 1962 Solid-State Electron. 5 341Google Scholar
[19] Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024 Sol. Energy 274 112585Google Scholar
[20] 刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第148页
Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p148
-
图 1 (a)异质结结构图; (b)异质结等效电路图; (c)适当电压、无限迁移率能带分布; (d)大电压、无限/有限迁移率能带分布; 这里Re为对电子的电阻(Ω·cm2), Rh为对空穴的电阻(Ω·cm2), DL, DH为窄带隙、宽带隙材料等效二极管, JL和JH为窄带隙、宽带隙材料产生的光生电流
Fig. 1. (a) Heterojunction structure diagram; (b) heterojunction equivalent circuit diagram; (c) infinite mobility band distribution under appropriate voltage; (d) infinite/finite mobility band distribution under high voltage. Re is the resistance to electrons (Ω·cm2), and Rh is the resistance to holes (Ω·cm2). DL and DH are equivalent diodes made of narrow bandgap and wide bandgap materials. JL and JH are photocurrent generated by narrow bandgap and wide bandgap materials, respectively.
图 6 (a) Eff -EH曲线(Rh = 0.01 Ω·cm2, EL = 0.52 eV); (b) Voc -EH曲线(Rh = 0.01 Ω·cm2, EL = 0.52 eV); (c) Eff -EL曲线(Rh = 0.01 Ω·cm2, EH = 1.52 eV); (d) Jsc -EL曲线(Rh = 0.01 Ω·cm2, EH = 1.52 eV)
Fig. 6. (a) Eff -EH curves (Rh = 0.01 Ω·cm2, EL = 0.52 eV); (b) Voc -EH curves (Rh = 0.01 Ω·cm2, EL = 0.52 eV); (c) Eff -EL curves (Rh = 0.01 Ω·cm2, EH = 1.52 eV); (d) Jsc -EL curves (Rh = 0.01 Ω·cm2, EH = 1.52 eV).
-
[1] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第28页
Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) p28
[2] Li Y, Ru X N, Yang M, et al. 2024 Nature 626 105Google Scholar
[3] Wang M H, Shi Y 2024 Sci. China Chem. 67 1117Google Scholar
[4] Wang T Y, Deng W Q, Cao J P, Yan F 2023 Adv. Energy Mater. 13 2201436Google Scholar
[5] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar
Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar
[6] 王傲 2021 博士学位论文(南京: 南京理工大学)
Wang A 2021 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[7] Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218Google Scholar
[8] Zhao Y F, Procel P, Han C, et al. 2023 Sol. Energy Mater. Sol. Cells 258 112413Google Scholar
[9] Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar
[10] Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023 Sci. China Mater. 66 4891Google Scholar
[11] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar
[12] Ahmad F, Lakhtakia A, Monk P B 2020 Appl. Phys. Lett. 117 033901Google Scholar
[13] Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019 Nat. Photonics 13 501Google Scholar
[14] Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021 Nat. Photonics 15 165Google Scholar
[15] Markvart T 2021 Nat. Photonics 15 163Google Scholar
[16] Marti A 2019 IEEE J. Photovolt. 9 1590Google Scholar
[17] 熊超, 陈磊, 袁洪春, 姚若河 2013 太阳能学报 34 746
Xiong C, Chen L, Yuan H C, Yao R H 2013 Acta Energ. Sol. Sin. 34 746
[18] Anderson R L 1962 Solid-State Electron. 5 341Google Scholar
[19] Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024 Sol. Energy 274 112585Google Scholar
[20] 刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第148页
Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p148
计量
- 文章访问数: 297
- PDF下载量: 18
- 被引次数: 0