搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Shockley-Queisser模型的异质结太阳电池极限效率计算

祝曾伟 张美荣 乔宝蓉 陈佳 杨慧永 周大勇

引用本文:
Citation:

基于Shockley-Queisser模型的异质结太阳电池极限效率计算

祝曾伟, 张美荣, 乔宝蓉, 陈佳, 杨慧永, 周大勇
cstr: 32037.14.aps.74.20240941

Shockley-Queisser theory based calculation of efficiency limit of heterojunction solar cells

ZHU Zengwei, ZHANG Meirong, QIAO Baorong, CHEN Jia, YANG Huiyong, ZHOU Dayong
cstr: 32037.14.aps.74.20240941
PDF
HTML
导出引用
  • Shockley-Queisser (S-Q)模型定义的理想太阳能电池是光伏器件分析的一个重要里程碑. 异质结太阳电池是光伏热门研究领域之一. 本文基于光伏电池S-Q模型基础, 针对异质结太阳电池空间势垒区能带不连续对光生载流子的输运存在的阻碍作用, 修订S-Q模型中的假设, 引入空间势垒区有限迁移率假设, 推导异质结太阳电池光电转换方程, 计算光电转换效率. 5780 K黑体辐射、电池温度300 K条件下计算结果表明最高转换效率约为31%; 异质结太阳能电池的开路电压可以超过窄带隙半导体的带隙限制; 高迁移率、低串阻条件下, 降低宽带隙半导体的光子吸收数目、增加窄带隙半导体光子吸收数目, 异质结太阳电池存在效率损失.
    The ideal solar cell defined by the Shockley-Queisser (S-Q) theory is an important milestone in the analysis of photovoltaic devices based on some assumptions. One or more of the above assumptions are gradually avoided, and even exceed or approach the S-Q efficiency limit, so the development and improvement of S-Q theory is necessary. Heterojunction solar cells are one of the hot research fields in photovoltaics. In order to address the hindering effect of energy band discontinuity in the spatial barrier region of heterojunction solar cells on the transport of photogenerated carriers, the assumptions of S-Q theory based on the original S-Q theory of photovoltaic cells are revised in this work. The carrier mobility in the barrier region is assumed to be finite, and the infinite mobility in the S-Q model is abandoned. But the mobility in the N-type and the P-type neutral region are still infinite. The lumped relationship between carrier mobility and resistance in the barrier region is derived. Therefore, the physical process of charge transport is described in detail in this paper based on the continuity equation for semiconductors by considering the effect of absorption coefficients to prevent the quasi-Fermi level from crossing the conduction or valence band. Thus, the revised S-Q theoretical limit model of heterojunction solar cell is constructed. The diode equivalent circuit diagram is deduced and the photovoltaic conversion efficiency is evaluated eventually. The loss effects of charge transmission and band gap mismatch on the performance of heterojunction solar cells are analyzed in detail. The calculation results under the condition of 5780 K blackbody radiation and 300 K cell temperature with N-type wide bandgap (EH) and P-type narrow bandgap (EL) materials show that the highest conversion efficiency is about 31% with a hole resistance of 0.01 Ω·cm2 and electronic resistance of 0.01 Ω·cm2. The calculations show that the electronic resistance has a more negative and complicated effect on solar cell performance than hole resistance. When Re and Rh are small, the best conversion efficiency is in a range between 1.22 eV and 1.32 eV of the narrow bandgap. Increasing Re can increase the open circuit voltage of solar cells, but there are losses in efficiency and fill factor of solar cells. When Re is large enough, for example, Re = 1000 Ω·cm2, the open circuit voltage of solar cells is not limited by EL and can exceed the bandgap limit of the narrow bandgap material. Increasing Rh will also reduce efficiency, but the effect is not so great as Re. The change of absorption coefficient can cause the photogenerated current of L and H branches to change, and the radiation recombination losses of both branches can be regulated.
      通信作者: 周大勇, zhoudayong2021@gusulab.ac.cn
    • 基金项目: 江苏省碳达峰碳中和科技创新专项资金(产业前瞻与关键核心技术攻关项目)(批准号: BE2022021)和苏州市碳达峰碳中和科技支撑项目(批准号: ST202219)资助的课题.
      Corresponding author: ZHOU Dayong, zhoudayong2021@gusulab.ac.cn
    • Funds: Project supported by the Carbon Peak and Carbon Neutrality Technology Innovation Special Fund (Industry Outlook and Key Core Technology Research Project) of Jiangsu Province, China (Grant No. BE2022021) and the Carbon Peak and Carbon Neutrality Technology Support Programm of Suzhou, China (Grant No. ST202219).
    [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第28页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) p28

    [2]

    Li Y, Ru X N, Yang M, et al. 2024 Nature 626 105Google Scholar

    [3]

    Wang M H, Shi Y 2024 Sci. China Chem. 67 1117Google Scholar

    [4]

    Wang T Y, Deng W Q, Cao J P, Yan F 2023 Adv. Energy Mater. 13 2201436Google Scholar

    [5]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar

    [6]

    王傲 2021 博士学位论文(南京: 南京理工大学)

    Wang A 2021 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218Google Scholar

    [8]

    Zhao Y F, Procel P, Han C, et al. 2023 Sol. Energy Mater. Sol. Cells 258 112413Google Scholar

    [9]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [10]

    Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023 Sci. China Mater. 66 4891Google Scholar

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [12]

    Ahmad F, Lakhtakia A, Monk P B 2020 Appl. Phys. Lett. 117 033901Google Scholar

    [13]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019 Nat. Photonics 13 501Google Scholar

    [14]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021 Nat. Photonics 15 165Google Scholar

    [15]

    Markvart T 2021 Nat. Photonics 15 163Google Scholar

    [16]

    Marti A 2019 IEEE J. Photovolt. 9 1590Google Scholar

    [17]

    熊超, 陈磊, 袁洪春, 姚若河 2013 太阳能学报 34 746

    Xiong C, Chen L, Yuan H C, Yao R H 2013 Acta Energ. Sol. Sin. 34 746

    [18]

    Anderson R L 1962 Solid-State Electron. 5 341Google Scholar

    [19]

    Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024 Sol. Energy 274 112585Google Scholar

    [20]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第148页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p148

  • 图 1  (a)异质结结构图; (b)异质结等效电路图; (c)适当电压、无限迁移率能带分布; (d)大电压、无限/有限迁移率能带分布; 这里Re为对电子的电阻(Ω·cm2), Rh为对空穴的电阻(Ω·cm2), DL, DH为窄带隙、宽带隙材料等效二极管, JLJH为窄带隙、宽带隙材料产生的光生电流

    Fig. 1.  (a) Heterojunction structure diagram; (b) heterojunction equivalent circuit diagram; (c) infinite mobility band distribution under appropriate voltage; (d) infinite/finite mobility band distribution under high voltage. Re is the resistance to electrons (Ω·cm2), and Rh is the resistance to holes (Ω·cm2). DL and DH are equivalent diodes made of narrow bandgap and wide bandgap materials. JL and JH are photocurrent generated by narrow bandgap and wide bandgap materials, respectively.

    图 2  有限迁移率条件下能带图

    Fig. 2.  Energy band diagram under limited mobility conditions.

    图 3  Eff分布图(α = 1, Rh = 0.01 Ω·cm2, Re = 0.01 Ω·cm2, EH = 1.52—3.12 eV , EL = 0.52—1.42 eV)

    Fig. 3.  Eff profile (α = 1, Rh = 0.01 Ω·cm2, Re = 0.01 Ω·cm2, EH = 1.52—3.12 eV , EL = 0.52—1.42 eV).

    图 4  I-V曲线(α = 1, EL = 0.82 eV, EH = 0.92, 1.52, 2.82 eV, Rh = 0.01 Ω·cm2, Re = 0.1, 1, 10, 1000 Ω·cm2)

    Fig. 4.  I-V curves (α = 1, EL = 0.82 eV, EH = 0.92, 1.52, 2.82 eV, Rh = 0.01 Ω·cm2, Re = 0.1, 1, 10, 1000 Ω·cm2).

    图 5  Eff分布图(α = 1, Rh = 0.01Ω·cm2, Re = 1 Ω·cm2, EH = 1.52—3.12 eV, EL = 0.52—1.42 eV)

    Fig. 5.  Eff profile (α = 1, Rh = 0.01 Ω·cm2, Re = 1 Ω·cm2, EH = 1.52–3.12 eV, EL = 0.52–1.42 eV).

    图 6  (a) Eff -EH曲线(Rh = 0.01 Ω·cm2, EL = 0.52 eV); (b) Voc -EH曲线(Rh = 0.01 Ω·cm2, EL = 0.52 eV); (c) Eff -EL曲线(Rh = 0.01 Ω·cm2, EH = 1.52 eV); (d) Jsc -EL曲线(Rh = 0.01 Ω·cm2, EH = 1.52 eV)

    Fig. 6.  (a) Eff -EH curves (Rh = 0.01 Ω·cm2, EL = 0.52 eV); (b) Voc -EH curves (Rh = 0.01 Ω·cm2, EL = 0.52 eV); (c) Eff -EL curves (Rh = 0.01 Ω·cm2, EH = 1.52 eV); (d) Jsc -EL curves (Rh = 0.01 Ω·cm2, EH = 1.52 eV).

    图 7  Eff分布图(α = 1, Rh = 0.01 Ω·cm2, Re = 10 Ω·cm2, EH = 1.52—3.12 eV, EL = 0.52—1.42 eV)

    Fig. 7.  Eff profile (α = 1, Rh = 0.01Ω·cm2, Re = 10 Ω·cm2, EH = 1.52–3.12 eV, EL = 0.52–1.42 eV).

    图 8  Eff -Re曲线

    Fig. 8.  Eff -Re curves.

    图 9  (a) Eff -EH曲线(EL = 1.12 eV, Re = 0.01 Ω·cm2); (b) Eff -Rh曲线

    Fig. 9.  (a) Eff -EH curves (EL = 1.12 eV, Re = 0.01 Ω·cm2); (b) Eff -Rh curves.

    图 10  Eff -α曲线(EL = 1.12 eV)

    Fig. 10.  Eff -α curves (EL = 1.12 eV).

  • [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第28页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) p28

    [2]

    Li Y, Ru X N, Yang M, et al. 2024 Nature 626 105Google Scholar

    [3]

    Wang M H, Shi Y 2024 Sci. China Chem. 67 1117Google Scholar

    [4]

    Wang T Y, Deng W Q, Cao J P, Yan F 2023 Adv. Energy Mater. 13 2201436Google Scholar

    [5]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar

    [6]

    王傲 2021 博士学位论文(南京: 南京理工大学)

    Wang A 2021 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218Google Scholar

    [8]

    Zhao Y F, Procel P, Han C, et al. 2023 Sol. Energy Mater. Sol. Cells 258 112413Google Scholar

    [9]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [10]

    Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023 Sci. China Mater. 66 4891Google Scholar

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [12]

    Ahmad F, Lakhtakia A, Monk P B 2020 Appl. Phys. Lett. 117 033901Google Scholar

    [13]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019 Nat. Photonics 13 501Google Scholar

    [14]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021 Nat. Photonics 15 165Google Scholar

    [15]

    Markvart T 2021 Nat. Photonics 15 163Google Scholar

    [16]

    Marti A 2019 IEEE J. Photovolt. 9 1590Google Scholar

    [17]

    熊超, 陈磊, 袁洪春, 姚若河 2013 太阳能学报 34 746

    Xiong C, Chen L, Yuan H C, Yao R H 2013 Acta Energ. Sol. Sin. 34 746

    [18]

    Anderson R L 1962 Solid-State Electron. 5 341Google Scholar

    [19]

    Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024 Sol. Energy 274 112585Google Scholar

    [20]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第148页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p148

  • [1] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率. 物理学报, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] 张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟. 单轴应变对Sb2Se3空穴迁移率的影响. 物理学报, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [5] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [6] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [7] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [8] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变SiNMOSFET源漏电流特性模型. 物理学报, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [9] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究. 物理学报, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [11] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [12] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [13] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [14] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [15] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究. 物理学报, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [16] 钟春良, 耿魁伟, 姚若河. a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象. 物理学报, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [17] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [18] 张端明, 李 莉, 李智华, 关 丽, 侯思普, 谭新玉. 靶材吸收率变化与烧蚀过程熔融前靶材温度分布. 物理学报, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [19] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率. 物理学报, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  297
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-12-04
  • 上网日期:  2024-12-17

/

返回文章
返回