搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡磁场驱动亚铁磁畴壁动力学研究

赵晨蕊 杨倩倩 焦距 唐政华 秦明辉

引用本文:
Citation:

振荡磁场驱动亚铁磁畴壁动力学研究

赵晨蕊, 杨倩倩, 焦距, 唐政华, 秦明辉
cstr: 32037.14.aps.74.20241033

Dynamics of ferrimagnetic domain wall driven by oscillating magnetic field

ZHAO Chenrui, YANG Qianqian, JIAO Ju, TANG Zhenghua, QIN Minghui
cstr: 32037.14.aps.74.20241033
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 亚铁磁材料在角动量补偿点附近具有类比于反铁磁的超快动力学, 且存在非零净自旋密度, 其磁结构可以被传统磁性手段探测和调控, 有望应用于新一代高性能自旋电子器件. 有效调控亚铁磁畴壁动力学是当前自旋电子学领域的重要课题. 本工作使用微磁学模拟研究了正弦波和方波振荡磁场驱动亚铁磁畴壁, 从理论上揭示不同的振荡磁场会诱导出不同方式的畴壁运动. 研究表明, 具有非零净自旋角动量的畴壁面随振荡磁场振荡, 正弦波磁场驱动亚铁磁畴壁的位移随时间单调增加, 而方波磁场驱动畴壁位移随时间曲折增大. 本工作系统探讨了亚铁磁畴壁速度与外部磁场和材料内部参数的关联, 表明了同强度下的正弦波磁场具有更高的驱动效率, 并揭示了相关物理机制, 可以为未来的实验和自旋器件设计提供参考.
    Ferrimagnetic materials exhibit ultrafast dynamic behaviors similar to those of antiferromagnetic materials near the angular momentum compensation point, where a non-zero net spin density is maintained. This unique feature makes their magnetic structures detectable and manipulable by using traditional magnetic techniques, thus positioning ferrimagnetic materials as promising candidates for next-generation high-performance spintronic devices. However, effectively controlling the dynamics of ferrimagnetic domain walls remains a significant challenge in current spintronics research.In this work, based on the classic Heisenberg spin model, Landau-Lifshitz-Gilbert (LLG) simulation is used to investigate the dynamic behaviors of ferrimagnetic domain walls driven by sinusoidal wave periodic magnetic field and square wave periodic magnetic field, respectively. The results show that these two types of oscillating magnetic fields induce distinct domain wall motion modes. Specifically, the domain wall surface, which has non-zero net spin angular momentum, oscillates in response to the external magnetic field. It is found that the domain wall velocity decreases as the net spin angular momentum increases. Moreover, the displacement of the ferrimagnetic domain wall driven by a sinusoidal magnetic field increases monotonically with time, while the displacement driven by a square wave magnetic field follows a more tortuous trajectory over time. Under high-frequency field conditions, the domain wall displacement shows more pronounced linear growth, and the domain wall surface rotates linearly with time. In this work, how material parameters, such as net spin angular momentum, anisotropy, and the damping coefficient, influence domain wall dynamics is also explored. Specifically, increasing the anisotropy parameter (dz) or the damping coefficient (α) results in a reduction of domain wall velocity. Furthermore, the study demonstrates that, compared with the square wave magnetic fields, the sinusoidal magnetic fields drive the domain wall more efficiently, leading domain wall to move faster. By adjusting the frequency and waveform of the periodic magnetic field, the movement of ferrimagnetic domain walls can be precisely controlled, enabling fine-tuned regulation of both domain wall velocity and position.Our findings show that sinusoidal magnetic fields, even at the same intensity, offer higher driving efficiency. The underlying physical mechanisms are discussed in detail, providing valuable insights for guiding the design and experimental development of domain wall-based spintronic devices.
      通信作者: 唐政华, tangzh@xnu.edu.cn ; 秦明辉, qinmh@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U22A20117, 52371243)、广东省自然科学基金(批准号: 2022A1515011727, 2024A1515012665)和湘南学院2021年度大学生创新项目资助的课题.
      Corresponding author: TANG Zhenghua, tangzh@xnu.edu.cn ; QIN Minghui, qinmh@scnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. U22A20117, 52371243), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2022A1515011727, 2024A1515012665), and the 2021 College Student Innovation Project of Xiangnan University, China.
    [1]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar

    [2]

    Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301Google Scholar

    [3]

    Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar

    [4]

    Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar

    [5]

    Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar

    [6]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [7]

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science 370 1438Google Scholar

    [8]

    Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420Google Scholar

    [9]

    张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501Google Scholar

    Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501Google Scholar

    [10]

    Chen Z Y, Qin M H, Liu J M, 2019 Phys. Rev. B 100 020402(RGoogle Scholar

    [11]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [12]

    Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar

    [13]

    Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429Google Scholar

    [14]

    Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444Google Scholar

    [15]

    Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001Google Scholar

    [16]

    Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218Google Scholar

    [17]

    Nishimura T, Kim D H, Hirata Y, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403Google Scholar

    [18]

    Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603Google Scholar

    [19]

    Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar

    [20]

    Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580Google Scholar

    [21]

    Caretta L, Avc C O 2024 APL Mater. 12 011106Google Scholar

    [22]

    Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716Google Scholar

    [23]

    Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834Google Scholar

    [24]

    Haltz E, Sampaio J, Krishnia S, Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292Google Scholar

    [25]

    Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237Google Scholar

    [26]

    Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622Google Scholar

    [27]

    Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604Google Scholar

    [28]

    Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293Google Scholar

    [29]

    Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308Google Scholar

    [30]

    Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442Google Scholar

    [31]

    Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640Google Scholar

    [32]

    Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Appl. 18 034065Google Scholar

    [33]

    Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166Google Scholar

    [34]

    Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002Google Scholar

    [35]

    Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815Google Scholar

    [36]

    赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报 72 208502Google Scholar

    Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar

    [37]

    Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003Google Scholar

    [38]

    Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Mater. 10 101107Google Scholar

    [39]

    Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410Google Scholar

    [40]

    Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974Google Scholar

  • 图 1  亚铁磁畴壁纳米条模型示意图, 磁矩沿z轴方向排列, 在z轴方向分别施加周期为T的正弦波和方波动态磁场

    Fig. 1.  Schematic diagram of the ferrimagnetic domain wall model. The magnetic moments are arranged along the z-axis direction, and sine-wave and square-wave magnetic fields are applied along the z-axis direction.

    图 2  不同净自旋角动量δs下, (a)正弦波磁场和(b)方波磁场驱动亚铁磁畴壁速度v与振荡磁场频率ω的关系图, 其中, z轴各向异性dz = 0.1J, 磁场振幅h0 = 0.005J, 阻尼系数α = 0.01

    Fig. 2.  Domain wall velocity v as functions of ω for various δs driven by the (a) sine-wave and (b) square-wave magnetic fields for dz = 0.1J, h0 = 0.005J, and the damping coefficient α = 0.01.

    图 3  h0 = 0.005J, dz = 0.1J, α = 0.01, ω = 0.05γJ/μs时, 正弦波磁场和方波磁场驱动畴壁速度与净自旋角动量δs的关系

    Fig. 3.  Simulated domain wall velocity v as functions of the net angular momentum δs driven by the sine-wave and square-wave magnetic fields for h0 = 0.005J, dz = 0.1J, ω = 0.05γJ/μs, and α = 0.01.

    图 4  ω = 0.05γJ/μs时, 正弦波磁场驱动下(a)畴壁位置和(b)畴壁面角随时间的演化, 以及方波磁场驱动下(c)畴壁位置和(d)畴壁面角随时间的演化. 在图(a)和(b)中, δs = –1.24×10–7 J·s·m–3, 在图(c)和(d)中, δs = 1.24×10–7 J·s·m–3. 场强度图用红色虚线标注

    Fig. 4.  Evolutions of the domain wall (DW) (a) position and (b) angle over time under the sine-wave magnetic field, and the DW (c) position and (d) angle evolutions under the square-wave magnetic field for ω = 0.05γJ/μs. In panels (a) and (b), δs = –1.24×10–7 J·s·m–3, while in panels (c) and (d), the opposite value is taken. The evolution of field magnitude is also depicted with red dashed lines.

    图 5  ω = 0.25γJ/μs, δs = 1.24×10–7 J·s·m–3时, 正弦波磁场驱动下(a)畴壁位置和(b)畴壁面角随时间的演化, 以及方波磁场驱动下(c)畴壁位置和(d)畴壁面角随时间的演化

    Fig. 5.  The DW (a) position and (b) angle evolution over time under the triangular form magnetic field, and (c) position and (d) angle evolution under the square form magnetic field for ω = 0.25γJ/μs and δs = 1.24×10–7 J·s·m–3. The evolution of field magnitude is also depicted with red dashed lines.

    图 6  h0 = 0.005J正弦波磁场作用下, δs = (a) 0, (b) 0.62 × 10–7 J·s·m–3时不同各向异性系数dz对应的v(ω)图(α = 0.01); 以及 δs = (c) 0, (d) –0.62 × 10–7 J·s·m–3时不同阻尼系数α对应的v(ω)图(dz = 0.1J )

    Fig. 6.  Simulated v(ω) curves driven by the sine-wave field for h0 = 0.005J for various dz for δs = (a) 0, (b) 0.62 × 10–7 J·s·m–3 and α = 0.01; and the curves for various α for δs = (c) 0, (d) –0.62×10–7 J·s·m–3 and dz = 0.1J.

    表 1  模拟过程中采用的磁性过渡金属磁矩(MTM)、稀土磁矩(MRE)以及净自旋角动量(δs)

    Table 1.  Magnetic transition metal moments (MTM), rare earth moments (MRE), and net angular momentum (δs) used in the simulations.

    参数 1 2 3 4 5 6 7 8 9
    MTM/(kA·m–1) 1120 1115 1110 1105 1100 1095 1090 1085 1080
    MRE/(kA·m–1) 1040 1030 1020 1010 1000 990 980 970 960
    δs/(10–7 J·s·m–3) –1.24 –0.93 –0.62 –0.31 0 0.31 0.62 0.93 1.24
    下载: 导出CSV
  • [1]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar

    [2]

    Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301Google Scholar

    [3]

    Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar

    [4]

    Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar

    [5]

    Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar

    [6]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [7]

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science 370 1438Google Scholar

    [8]

    Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420Google Scholar

    [9]

    张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501Google Scholar

    Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501Google Scholar

    [10]

    Chen Z Y, Qin M H, Liu J M, 2019 Phys. Rev. B 100 020402(RGoogle Scholar

    [11]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [12]

    Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar

    [13]

    Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429Google Scholar

    [14]

    Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444Google Scholar

    [15]

    Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001Google Scholar

    [16]

    Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218Google Scholar

    [17]

    Nishimura T, Kim D H, Hirata Y, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403Google Scholar

    [18]

    Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603Google Scholar

    [19]

    Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar

    [20]

    Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580Google Scholar

    [21]

    Caretta L, Avc C O 2024 APL Mater. 12 011106Google Scholar

    [22]

    Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716Google Scholar

    [23]

    Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834Google Scholar

    [24]

    Haltz E, Sampaio J, Krishnia S, Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292Google Scholar

    [25]

    Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237Google Scholar

    [26]

    Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622Google Scholar

    [27]

    Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604Google Scholar

    [28]

    Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293Google Scholar

    [29]

    Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308Google Scholar

    [30]

    Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442Google Scholar

    [31]

    Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640Google Scholar

    [32]

    Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Appl. 18 034065Google Scholar

    [33]

    Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166Google Scholar

    [34]

    Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002Google Scholar

    [35]

    Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815Google Scholar

    [36]

    赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报 72 208502Google Scholar

    Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar

    [37]

    Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003Google Scholar

    [38]

    Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Mater. 10 101107Google Scholar

    [39]

    Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410Google Scholar

    [40]

    Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974Google Scholar

  • [1] 芦闻天, 姚春伟, 严志, 袁喆. 激光诱导自旋阀结构的超快自旋动力学研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241744
    [2] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [3] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [5] 赵晨蕊, 魏云昕, 刘婷婷, 秦明辉. 正弦微波磁场驱动亚铁磁畴壁动力学. 物理学报, 2023, 72(20): 208502. doi: 10.7498/aps.72.20230913
    [6] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [7] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运. 物理学报, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [8] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [9] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [10] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [11] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [12] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [13] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [14] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [15] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [16] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [17] 任 敏, 张 磊, 胡九宁, 邓 宁, 陈培毅. 基于磁动力学方程的电流感应磁化翻转效应的宏观模型. 物理学报, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  386
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-12-11
  • 上网日期:  2024-12-23

/

返回文章
返回