搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿节肢动物肢体构型的M形低频隔振结构设计及其动力学机理

蓝春波 贾洁 汪洋 王烁 张璐

引用本文:
Citation:

仿节肢动物肢体构型的M形低频隔振结构设计及其动力学机理

蓝春波, 贾洁, 汪洋, 王烁, 张璐

Design and dynamic mechanism of M-shaped low-frequency isolation structure imitating limb configuration of arthropods

LAN Chunbo, JIA Jie, WANG Yang, WANG Shuo, ZHANG Lu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 蜘蛛、螳螂等节肢动物能够在晃动的蛛网或树叶上保持身体的稳定性, 其类M形肢体结构的作用不可忽视. 受此启发, 本文提出一种基于节肢动物肢体结构的仿生M形低频隔振结构. 首先, 提出仿生M形低频隔振结构的设计方法, 并建立其动力学模型. 通过对其等效刚度、准零刚度范围等静态特性的对比分析, 发现仿生M形结构的非线性刚度能够有效拓宽准零刚度范围. 运用谐波平衡法进行近似求解, 得到其频率响应特性, 并分析其频率和幅值分岔动力学特性. 通过与经典三弹簧准零刚度结构对比, 发现M形仿生结构能够有效降低隔振频率, 并能降低隔振频带内的传递率. 最后, 研究了M形仿生结构的几何形状对其隔振性能的影响规律. 结果表明, 类似蜘蛛肢体的扁平状M形结构具有更低的隔振频率, 更好的低频隔振效果.
    Arthropods, including spiders and mantises, can maintain their body stability on shaking surfaces, such as spiderwebs or leaves. This impressive stability can be attributed to the specific geometric shape of their limbs, which exhibit an M-shaped structure. Inspired by this geometry, this work proposes an arthropod-limb-inspired M-shaped structure for low-frequency vibration isolation. First, the design method of the M-shaped quasi-zero-stiffness (QZS) structure is presented. A static analysis of potential energy, restoring force, and equivalent stiffness is conducted, showing that the M-shaped structure enables a horizontal linear spring to generate nonlinear stiffness in the vertical direction. More importantly, this nonlinear stiffness effectively compensates for the negative stiffness in large-displacement responses, thereby achieving a wider quasi-zero-stiffness region than the conventional three-spring-based QZS structure. Subsequently, the harmonic balance method is employed to derive approximate analytical solutions for the M-shaped QZS structure, which are well validated through numerical simulation. A comparison between the proposed M-shaped QZS structure and the conventional three-spring-based QZS structure is performed. Results show that the M-shaped QZS structure is advantageous for reducing both the cut-in isolation frequency and the resonance frequency. In particular, under large excitation or small damping conditions, the performance improvement of the M-shaped QZS structure in terms of reducing the resonance frequency and maximum response becomes more pronounced. The underlying mechanism behind this feature is primarily attributed to the expanded QZS region induced by the M-shaped structure. Finally, since the M-shaped structures vary among different arthropods, the effect of the geometry of M-shaped structures on low-frequency vibration performance is investigated. Interestingly, a trade-off between vibration isolation performance and loading mass is observed. As the M-shaped structure becomes flatter and the QZS region expands, the cut-in isolation frequency, resonance frequency/peak, and loading mass all decrease. This occurs because a flatter M-shaped structure leads to a reduction in the equivalent stiffness generated by the horizontal stiffness. Therefore, as the loading mass capacity decreases, the low-frequency vibration isolation performance is enhanced. This novel finding provides a reasonable explanation for why most arthropods possess many pairs of limbs, allowing the loading mass to be distributed while achieving excellent low-frequency vibration isolation.
  • 图 1  蜘蛛和螳螂等节肢动物腿部的几何形状与仿生M形结构

    Fig. 1.  Geometries of arthropods’ limbs and the bio-inspired M-shaped structure.

    图 2  仿生M形结构模型图 (a)无负载时的静平衡状态; (b)有负载时的静平衡状态; (c)运动状态

    Fig. 2.  Bio-inspired M-shaped structure: (a) Static equilibrium without mass; (b) static equilibrium with mass; (c) oscillating state.

    图 3  M形准零刚度结构的静态特性 (a)势能; (b)等效恢复力; (c)等效刚度

    Fig. 3.  Static characteristics of MQZS structure: (a) Potential energy; (b) equivalent restoring force; (c) equivalent stiffness.

    图 4  M形准零刚度结构(MQZS)与三弹簧准零刚度结构(QZS)静态特性对比 (a)等效恢复力; (b)等效刚度

    Fig. 4.  Static characteristics comparison between MQZS and QZS: (a) Equivalent restoring force; (c) equivalent stiffness.

    图 5  等效恢复力的解析解与多项式拟合结果对比

    Fig. 5.  Comparison of analytical solution and fitted results of the restoring force.

    图 6  系统频率响应的解析解与数值解对比

    Fig. 6.  Comparison between analytical solution and numerical simulation.

    图 7  M形仿生结构的激励幅值分岔图(f = 2.2 Hz)

    Fig. 7.  Bifurcation diagram of MQZS induced by excitation amplitude (f = 2.2 Hz).

    图 8  不同激励幅值下系统的响应(f = 2.2 Hz) (a), (d), (g)时域图; (b), (e), (h)频域图; (c), (f), (i)相图

    Fig. 8.  Dynamic responses at different excitations (f = 2.2 Hz): (a), (d), (g) Time-history response; (b), (e), (h) spectrum responses; (c), (f), (i) phase diagrams.

    图 9  激励频率变化时系统分岔图(A = 2.0 m/s2)

    Fig. 9.  Bifurcation diagram as the excitation frequency changes (A = 2.0 m/s2).

    图 10  不同激励频率下系统的响应(A = 2 m/s2) (a), (d), (g)时域图; (b), (e), (h)频域图; (c), (f), (i)相图

    Fig. 10.  Dynamic responses at different excitation frequencies (A = 2 m/s2): (a), (d), (g) Time-history response; (b), (e), (h) spectrum responses; (c), (f), (i) phase diagrams.

    图 11  MQZS结构与三弹簧QZS结构传递率对比(A = 1.0 m/s2, c = 0.1 N·s/m)

    Fig. 11.  Transmittance comparison between MQZS and QZS (A = 1.0 m/s2, c = 0.1 N·s/m).

    图 12  不同激励幅值下MQZS和传统QZS系统传递率特性对比图(c = 0.1 N·s/m)

    Fig. 12.  Transmittances comparison of MQZS and QZS under different excitations (c = 0.1 N·s/m)

    图 13  不同阻尼下MQZS和传统QZS系统传递率特性对比图(A = 1.0 m/s2)

    Fig. 13.  Transmittances comparison of MQZS and QZS with different damping (A = 1.0 m/s2).

    图 14  参数s对MQZS等效刚度的影响 (a)等效刚度; (b)准零刚度范围; (c)负载质量

    Fig. 14.  Effect of s on the equivalent stiffness of MQZS: (a) Equivalent stiffness; (b) quasi-zero-stiffness region; (c) mass.

    图 15  参数s对MQZS传递率特性的影响规律

    Fig. 15.  Effect of s on the transmittance of MQZS.

    表 1  结构参数

    Table 1.  Structure Parameters.

    MQZS结构参数取值三弹簧QZS结构参数取值
    水平间距s/mm120水平间距s1/mm120
    杆长l/mm80初始高度h1/mm30
    初始高度h/mm30斜弹簧刚度k11/(N·m–1)400
    斜弹簧刚度k1/(N·m–1)400垂直弹簧刚度k12/(N·m–1)24.62
    下载: 导出CSV
  • [1]

    Jiao X L, Zhang J X, Li W B, Wang Y Y, Ma W L, Zhao Y 2023 Prog. Aerosp. Sci. 138 100898Google Scholar

    [2]

    Li L, Wang L, Yuan L, Zheng R, Wu Y P, Sui J, Zhong J 2021 Acta Astronaut. 180 417Google Scholar

    [3]

    https://ntrs.nasa.gov/citations/20210017871 [2025-05-07]

    [4]

    孟光, 董瑶海, 周徐斌, 申军烽, 刘兴天 2019 中国科学: 物理学 力学 天文学 49 024508Google Scholar

    Meng G, Dong Y H, Zhou X B, Shen J F, Liu X T 2019 Sci. Sin-Phys. Mech. Astron. 49 024508Google Scholar

    [5]

    McPherson K, Hrovat K, Kelly E, Keller J 2015 A Researcher’s Guide to Acceleration Environment on the International Space Station (Washington, D. C. : NASA) pp37-41

    [6]

    刘海平, 张世乘, 门玲鸰, 何振强 2022 物理学报 71 160701Google Scholar

    Liu H P, Zhang S C, Men L L, He Z Q 2022 Acta Phys. Sin. 71 160701Google Scholar

    [7]

    Luo H T, Fan C H, Li Y X, Liu G M, Yu C S 2023 Eur. J. Mech. A-Solid. 97 104833Google Scholar

    [8]

    Molyneux W G 1958 Aircr. Eng. Aerosp. Tec. 30 160Google Scholar

    [9]

    Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar

    [10]

    张月英 2014 硕士学位论文 (湖南: 湖南大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Hunan University

    [11]

    Kovacic I, Brennan M J, Waters T P 2008 J. Sound Vib. 315 700Google Scholar

    [12]

    Zhou J X, Wang X L, Xu D L, Bishop S 2015 J. Sound Vib. 346 53Google Scholar

    [13]

    Zhao F, Ji J C, Ye K, Luo Q T 2020 Mech. Syst. Signal Pr. 144 106975Google Scholar

    [14]

    Deng T C, Wen G L, Ding H, Lu Z Q, Chen L Q 2020 Mech. Syst. Signal Pr. 145 106967Google Scholar

    [15]

    Liu C R, Yu K P, Liao B P, Hu R P 2021 Commun. Nonlinear Sci. Numer. Simulat. 95 105654Google Scholar

    [16]

    郝志峰 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Hao Z F 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    阮子悦 2023 硕士学位论文 (石家庄: 石家庄铁道大学)

    Ran Z R 2023 M. S. Thesis (Shijiazhuang: Shijiazhuang TieDao University

    [18]

    Yan B, Yu N, Wang Z H, Wu C Y, Wang S, Zhang W M 2022 J. Sound Vib. 527 116865Google Scholar

    [19]

    Liu X T, Huang X C, Hua H X 2013 J. Sound Vib. 332 3359Google Scholar

    [20]

    Wang K, Zhou J X, Chang Y P, Ouyang H J, Xu D L, Yang Y 2020 Nonlinear Dynam. 101 755Google Scholar

    [21]

    Wu W J, Chen X D, Shan Y H 2014 J. Sound Vib. 333 2958Google Scholar

    [22]

    安隽翰 2021 硕士学位论文 (南京: 南京航空航天大学)

    An J H, 2021 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [23]

    Yan G, Zou H X, Wang S, Zhao L C, Wu Z Y, Zhang W M 2021 Appl. Mech. Rev. 73 020801Google Scholar

    [24]

    Wu Z J, Jing X J, Bian J, Li F M, Allen R 2015 Bioinspir. Biomim. 10 056015Google Scholar

    [25]

    Yan G, Wang S, Zou H X, Zhao L C, Gao Q H, Zhang W M 2020 Sci. China Tech. Sci. 63 2617Google Scholar

    [26]

    Shi X J, Xu J, Chen T K, Qian C, Tian W J 2023 J. Bionic Eng. 20 2194Google Scholar

    [27]

    Zeng R, Wen G L, Zhou J X, Zhao G 2021 Acta Mech. Sinica-PRC 37 1152Google Scholar

    [28]

    Yan G, Zou H X, Wang S, Zhao L C, Wu Z Y, Zhang W M 2022 Mech. Syst. Signal Pr. 162 108010Google Scholar

    [29]

    Jin G X, Wang Z H, Yang T Z 2022 Appl. Math. Mech. -Engl. Ed. 43 813Google Scholar

    [30]

    Ling P, Miao L L, Zhang W M, Wu C Y, Yan B 2022 Mech. Syst. Signal Pr. 171 108955Google Scholar

    [31]

    Long S M, Leonard A, Carey A, Jakob E M 2015 J. Arachnol. 43 111Google Scholar

  • [1] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, doi: 10.7498/aps.70.20200973
    [2] 刘恩彩, 方鑫, 温激鸿, 郁殿龙. 双稳态结构中的1/2次谐波共振及其对隔振特性的影响. 物理学报, doi: 10.7498/aps.69.20191082
    [3] 罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强. 基于滑模鲁棒算法的超低频主动隔振系统. 物理学报, doi: 10.7498/aps.67.20171884
    [4] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 物理学报, doi: 10.7498/aps.66.014307
    [5] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, doi: 10.7498/aps.65.200702
    [6] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振. 物理学报, doi: 10.7498/aps.64.110501
    [7] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动. 物理学报, doi: 10.7498/aps.62.114301
    [8] 王成会, 程建春. 微管内气泡的受迫振动. 物理学报, doi: 10.7498/aps.61.194303
    [9] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究. 物理学报, doi: 10.7498/aps.60.074301
    [10] 吴钦宽. 输电线非线性振动问题的同伦映射近似解. 物理学报, doi: 10.7498/aps.60.068802
    [11] 闫辉, 姜洪源, 刘文剑, 郝振东, Ulannov A. M.. 金属橡胶隔振器随机振动加速度响应分析. 物理学报, doi: 10.7498/aps.59.4065
    [12] 陈赵江, 张淑仪, 郑凯. 高功率超声脉冲激励下金属板的非线性振动现象研究. 物理学报, doi: 10.7498/aps.59.4071
    [13] 王海民, 马建敏, 张文. 两个等径蛋白质气泡在Bingham流体中振动特性. 物理学报, doi: 10.7498/aps.59.401
    [14] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, doi: 10.7498/aps.59.2137
    [15] 闫辉, 姜洪源, 刘文剑, Ulannov A. M.. 具有迟滞非线性的金属橡胶隔振器参数识别研究. 物理学报, doi: 10.7498/aps.58.5238
    [16] 张琪昌, 王 炜, 何学军. 研究强非线性振动系统同宿分岔问题的规范形方法. 物理学报, doi: 10.7498/aps.57.5384
    [17] 秦卫阳, 杨永锋, 王红瑾, 任兴民. 非线性振动系统的预测同步方法研究. 物理学报, doi: 10.7498/aps.57.2068
    [18] 秦卫阳, 王红瑾, 张劲夫. 一类时变非线性振动系统的同步控制方法. 物理学报, doi: 10.7498/aps.56.4361
    [19] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, doi: 10.7498/aps.55.6488
    [20] 庞小峰. 水的非线性振动能谱的自陷理论计算. 物理学报, doi: 10.7498/aps.43.1987
计量
  • 文章访问数:  181
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2025-04-20
  • 上网日期:  2025-05-10

/

返回文章
返回