搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟

彭毅 汪纯婧 李晶 高凯悦 徐汉城 陈传杰 钱沐杨 董冰岩 王德真

引用本文:
Citation:

大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟

彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真
cstr: 32037.14.aps.74.20241241

Numerical simulation on mechanism of plasma dissociation of carbon dioxide in atmospheric pressure packed-bed reactors

PENG Yi, WANG Chunjing, LI Jing, GAO Kaiyue, XU Hancheng, CHEN Chuanjie, QIAN Muyang, DONG Bingyan, WANG Dezhen
cstr: 32037.14.aps.74.20241241
PDF
HTML
导出引用
  • 本文基于PASSKEy(PArallel streamer solver with KinEtics)构建了一个多层介质球的二氧化碳填充式介质阻挡放电二维模型, 并对此模型的流注传播演化动态过程进行了深入系统的仿真研究. 研究指出第1层和第2层介质球的内侧不是二氧化碳解离等反应发生的主要区域, 主要区域为流注传播路径以及第1层介质球的外侧. 同时, 本文还对此模型的电子密度与电场的演化进行深入解析, 并给出了相应的物理机理和对应特征点的局部电场演化. 此外, 还分别研究了空间电荷和表面电荷的时空演化, 指出整体上空间中的负电荷随着流注的形成和传播, 不断收缩于流注内部和介质表面, 而正电荷主导放电空间的电荷分布. 并且通过展开特定介质球的表面, 给出了具体的分布角度范围和演变趋势. 最后研究了一氧化碳粒子和二氧化碳离子和氧气离子的时空演化机理, 并且对放电空间中所有的电子和二氧化碳离子的空间能量沉积进行积分, 数据表明在此模型中的总能量沉积值约为1.428 mJ/m, 二氧化碳离子的沉积能量约为0.1251 mJ/m, 占比达8.8%.
    The streamer propagation and electric field distribution in a two-dimensional fluid model of a packed bed reactor (PBR) filled with carbon dioxide are comprehensively studied by utilizing the PASSKEy simulation platform in this work. The spatiotemporal evolution of electron density, electric fields and key plasma species in the discharge process are studied in depth. The PBR with layered dielectric spheres is simulated by using the model, indicating that the inner sides of the first layer and the second layer of dielectric spheres are not the main regions for reactions such as CO2 dissociation; instead, the main regions are along the streamer propagation path and the outer side of the first layer of dielectric sphere. In this work, the propagation of streamers in an electric field is investigated, highlighting the influence of anode voltage rise and dielectric polarization on local electric field enhancement. This enhancement leads the electron density and temperature to increase, which facilitats streamer propagation and the formation of filamentary microdischarges and surface ionization waves. This work provides a detailed analysis of the local electric field evolution at specific points within the PBR, and a further investigation of the spatiotemporal dynamics of spatial and surface charges, revealing that negative charges concentrate in the streamer and on the dielectric surface, with density being significantly higher than that of positive charges. The positive charge distribution is closely related to the streamer path, and with time going by, the charge distribution becomes dominated in the discharge space. This work also explores the surface charge deposition on the dielectric spheres, and discusses the evolution trend of the distribution. Additionally, this work discusses the temporal and spatial evolution of key plasma species, including ions and radicals, and their contributions to the overall discharge characteristics. The production mechanisms of carbon monoxide particles, carbon dioxide ions, and oxygen ions are analyzed, with a focus on their spatial distribution and correlation with electron density. Finally, the energy deposition within the PBR is examined by integrating the spatial energy deposition of electrons and major positive ions. The results indicate a total energy deposition value of approximately 1.428 mJ/m, with carbon dioxide ions accounting for 8.8% of this value.
      通信作者: 钱沐杨, qianmuyang@ncu.edu.cn ; 董冰岩, dongbingyan1@sina.com
    • 基金项目: 国家自然科学基金(批准号: 12475261, 12065019, 12405296)资助的课题.
      Corresponding author: QIAN Muyang, qianmuyang@ncu.edu.cn ; DONG Bingyan, dongbingyan1@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475261, 12065019, 12405296).
    [1]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [2]

    George A, Shen B X, Craven M, Wang Y L, Kang D R, Wu C F, Tu X 2021 Renew. Sust. Energ. Rev. 135 109702Google Scholar

    [3]

    Bogaerts A, Neyts E C, Guaitella O, Murphy A B 2022 Plasma Sources Sci. Technol. 31 053002Google Scholar

    [4]

    Sun S R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [5]

    张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar

    [6]

    Hinterman E, Hoffman J A 2020 Acta Astronaut. 170 678Google Scholar

    [7]

    McClean J B, Hoffman J A, Hecht M H, Aboobaker A M, Araghi K R, Elangovan S, Graves C R, Hartvigsen J J, Hinterman E D, Liu A M, Meyen F E, Nasr M, Ponce A, Rapp D, SooHoo J G, Swobada J, Voecks G E 2022 Acta Astronaut. 192 301Google Scholar

    [8]

    Wang W Z, Kim H H, Laer K V, Bogaerts A 2018 Chem. Eng. J. 334 2467Google Scholar

    [9]

    Kruszelnicki J, Engeling K W, Foster J E, Xiong Z M, Kushner M J 2017 J. Phys. D: Appl. Phys. 50 025203Google Scholar

    [10]

    Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002Google Scholar

    [11]

    Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process 43 1613Google Scholar

    [12]

    Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004Google Scholar

    [13]

    Cheng H, Ma M Y, Zhang Y Z, Liu D W, Lu X P 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [14]

    Lu N, Liu N, Zhang C K, Su Y, Shang K F, Jiang N, Li J, Wu Y 2021 Chem. Eng. J. 417 129283Google Scholar

    [15]

    Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207Google Scholar

    [16]

    Kaliyappan P, Paulus A, Haen J D, Pieter S, Uytdenhouwen Y, Hafezkhiabani N, Bogaerts A, Meynen V, Elen K, Hardy A, Bael M V 2021 J. CO2 Util. 46 101468Google Scholar

    [17]

    Uytdenhouwen Y, Meynen V, Cool P, Bogaerts A 2020 Catalysts 10 530Google Scholar

    [18]

    Uytdenhouwen Y, Alphen S V, Michielsen I, Meynen V, Cool P, Bogaerts A 2018 Chem. Eng. J. 348 557Google Scholar

    [19]

    Li X R, Dijcks S, Sun A B, Nijdam S, Teunissen J 2024 Plasma Sources Sci. Technol. 33 095009Google Scholar

    [20]

    Marskar R 2024 Plasma Sources Sci. Technol. 33 025023Google Scholar

    [21]

    Zhou C, Yuan C X, Kudryavtsev A, Katircioglu T Y, Rafatov I, Yao J F 2023 Plasma Sources Sci. Technol. 32 015010Google Scholar

    [22]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [23]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 61 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205Google Scholar

    [24]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [25]

    肖江平, 戴栋, Victor F. Tarasenko, 邵涛 2023 物理学报 72 105201Google Scholar

    Xiao J P, Dai D, Tarasenko V F, Shao T 2023 Acta Phys. Sin. 72 105201Google Scholar

    [26]

    Zhu Y F, Chen X C, Wu Y, Starikovskaia S 2021 PASSKEy code [software]. Available from http://www.plasma-tech.net/parser/passkey/, Science and Technology of Plasma Dynamics Laboratory, Xi’an, China and Laboratoire de Physique des Plasmas, Paris, France

    [27]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [28]

    Pancheshnyi S 2014 Plasma Sources Sci. Technol. 24 015023Google Scholar

    [29]

    Zhu Y F, Wu Y, Li J 2020 arXiv. 2005.10021

    [30]

    Guo Y L, Li Y R, Zhu Y F, Sun A B 2023 Plasma Sources Sci. Technol. 32 025003Google Scholar

    [31]

    Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16 656Google Scholar

    [32]

    Teich T H 1967 Z. Phys. 199 378Google Scholar

    [33]

    Przybylski A 1962 Z. Phys. 168 504Google Scholar

    [34]

    Sroka W 1970 Zeitschrift für Naturforschung A 25 1437

    [35]

    Bagheri B, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29 125021Google Scholar

    [36]

    Levko D, Pachuilo M, Raja L L 2017 J. Phys. D: Appl. Phys. 50 354004Google Scholar

    [37]

    Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007Google Scholar

    [38]

    Peng B F, Jiang N, Zhu Y F, Wu Y 2024 Plasma Sources Sci. Technol. 33 045018Google Scholar

    [39]

    Itikawa database, www. lxcat. net [2024-05-19]

    [40]

    IST-Lisbon database, www. lxcat. net [2024-05-19]

    [41]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [42]

    Bogaerts A, Wang W Z, Berthelot A, Guerra V 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [43]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [44]

    Chen Y L, Peng Y, Qian M Y, Liu S Q, Zhang J L, Wang D Z 2022 Jpn. J. Appl. Phys. 61 086001Google Scholar

  • 图 1  三项亥姆霍兹方程拟合图

    Fig. 1.  Fitted plot of the three terms Helmholtz equation.

    图 2  模型结构图 (a)几何结构; (b)电压波形; (c)网格剖分示意图

    Fig. 2.  Model structure: (a) Geometry; (b) voltage; (c) mesh.

    图 3  电子密度的时空演化

    Fig. 3.  Time evolution of electron density

    图 4  约化电场的时空演化

    Fig. 4.  Time evolution of the reduced electric field.

    图 5  局部电场的时间演化 (a) 6个节点的空间位置, 背景图为5 ns时的约化电场; (b) 6个节点处的约化电场强度随时间的变化

    Fig. 5.  Time evolution of the local electric field: (a) The location of the six points, with the reduced electric field at 5 ns in the background image; (b) the variation of the reduced electric field amplitude with time at the six points.

    图 6  空间电荷数密度的时空演化

    Fig. 6.  Time evolution of the number density of space charge.

    图 7  介质表面电荷的时空演化 (a), (f) D2; (b) (e) D1; (c) (d) D0

    Fig. 7.  Time evolution of the dielectric surface charge: (a), (f) D2; (b) (e) D1; (c) (d) D0.

    图 8  二氧化碳离子的时空演化

    Fig. 8.  Time evolution of carbon dioxide ions.

    图 10  一氧化碳的时空演化

    Fig. 10.  Time evolution of carbon monoxide.

    图 9  氧气分子离子的时空演化

    Fig. 9.  Time evolution of oxygen molecular ions.

    图 11  电子温度的时空演化

    Fig. 11.  Time evolution of the electron temperature.

    图 12  电子和二氧化碳离子的空间能量沉积

    Fig. 12.  Total energy deposition of electrons and carbon dioxide ions.

    表 1  三项亥姆霍兹方程系数Anλn

    Table 1.  Coefficients of the three terms Helmholtz equation An and λn.

    nAn/(cm–2·torr–1)λn /(cm–1·torr–1)
    13.74×10–52.31
    24.35×10–60.837
    31.55×10–47.79
    下载: 导出CSV

    表 2  模型中包含的粒子概述

    Table 2.  Overview of particles included in the model.

    分子 CO2, CO, O2
    离子 ${\mathrm{CO}}_2^+ $, CO+, C+, O+, ${\mathrm{O}}_2^+ $, O, ${\mathrm{O}}_2^- $
    自由基 O, C
    下载: 导出CSV

    表 3  模型中包含的电子碰撞反应

    Table 3.  Electron collision reactions included in the model.

    类型 反应 焓变/eV 反应速率
    电离 e + CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $ + e + e –13.80 BOLSIG+
    电离 e + CO2$ \Rightarrow$CO + O+ + e + e –19.1 BOLSIG+
    电离 e + CO2$ \Rightarrow$O + CO+ + e + e –19.5 BOLSIG+
    电离 e + CO2$ \Rightarrow$O2+C+ + e + e –27.8 BOLSIG+
    电离 e + CO$ \Rightarrow$CO+ + e + e –14.01 BOLSIG+
    电离 e + CO$ \Rightarrow$C++O + e + e –22.0 BOLSIG+
    电离 e + CO$ \Rightarrow$C + O+ + e + e –25.0 BOLSIG+
    电离 e + O2$ \Rightarrow$${\mathrm{O}}_2^+ $ + e + e –12.06 BOLSIG+
    解离 e + O2$ \Rightarrow$e + O + O 0.8 BOLSIG+
    解离 e + CO2$ \Rightarrow$e + CO + O –7.0 BOLSIG+
    吸附 e + O2 + O2$ \Rightarrow$${\mathrm{O}}_2^- $+O2 0 6.0 × 10–39$ T_{\text{e}}^{{{ - 1}}} $b*
    吸附 e + O2 + CO2$ \Rightarrow$CO2 + ${\mathrm{O}}_2^- $ 1.60 3.0 × 10–42 b*
    吸附 e + O + CO2$ \Rightarrow$CO2 + O 1.60 1.0 × 10–43 b*
    解离+吸附 e + CO2$ \Rightarrow$CO + O 0 BOLSIG+
    解离+吸附 e + CO$ \Rightarrow$C + O 0 BOLSIG+
    解离+吸附 e + O2$ \Rightarrow$O+O 0 BOLSIG+
    e-i 复合 e + ${\mathrm{CO}}_2^+ $$ \Rightarrow$CO + O 1.60 $2.0 \times 10^{-11} T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 1} $a*
    e-i 复合 e + ${\mathrm{CO}}_2^+ $$ \Rightarrow$C + O 1.60 $3.68 \times 10^{-14} T_{\text{e}}^{-0.55} $a*
    e-i 复合 e + ${\mathrm{CO}}_2^+ $$ \Rightarrow$C + O2 1.60 $3.94 \times 10^{-13} T_{\text{e}}^{-0.4} $a*
    e-i 复合 e + ${\mathrm{O}}_2^+ $$ \Rightarrow$O + O 1.60 $6.0 \times 10^{-13} T_{\text{e}}^{{{ - 0}}{.5}} \cdot T_{\text{g}}^{ - 0.5} $a*
    e-i 复合 e + O2+ + CO2$ \Rightarrow$O2 + CO2 1.60 1.0 × 10–38 b*
    e-i 复合 e + O+ + CO2$ \Rightarrow$O + CO2 1.60 1.0 × 10–38 b*
    注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s).
    下载: 导出CSV

    表 4  模型中包含的重粒子反应

    Table 4.  Heavy particle reactions included in the model.

    类型 反应 焓变/eV 反应速率
    电子分离 O + O$ \Rightarrow$O2+e 0 1.4 × 10–16 a*
    电子分离 ${\mathrm{O}}_2^- $ + O$ \Rightarrow$O2 + O + e 0 1.5 × 10–16 a*
    i-i复合 ${\mathrm{O}}_2^- $+${\mathrm{O}}_2^+ $ + O2$ \Rightarrow$O2 + O2 + O2 7.0 2.0 × 10–37 b*
    电荷转移 O+ + CO2$ \Rightarrow$${\mathrm{O}}_2^+ $ + CO 0 9.4 × 10–16 a*
    电荷转移 O+ + CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $ + O 0 4.5 × 10–16 a*
    电荷转移 CO+ + CO2$ \Rightarrow$${\mathrm{CO}}_2^+ $ + CO 0 1.0 × 10–15 a*
    电荷转移 C+ + CO$ \Rightarrow$CO+ + C 0 5.0 × 10–19 a*
    电荷转移 ${\mathrm{O}}_2^+ $ + C$ \Rightarrow$CO+ + O 0 5.2 × 10–17 a*
    电荷转移 ${\mathrm{CO}}_2^+ $ + O2$ \Rightarrow$CO2 + ${\mathrm{O}}_2^+ $ 0 5.3 × 10–17 a*
    电荷转移 ${\mathrm{CO}}_2^+ $ + O$ \Rightarrow$CO+${\mathrm{O}}_2^+ $ 0 1.64 × 10–16 a*
    电荷转移 ${\mathrm{CO}}_2^+ $ + O$ \Rightarrow$CO2 + O+ 0 9.62 × 10–17 a*
    电荷转移 CO+ + O$ \Rightarrow$CO + O+ 0 1.4 × 10–16 a*
    电荷转移 CO+ + O2$ \Rightarrow$CO + ${\mathrm{O}}_2^+ $ 0 1.2 × 10–16 a*
    中性反应 CO2 + CO2$ \Rightarrow$CO + O + CO2 0.60 $3.91 \times 10^{-16} \exp [-(49430/T_{\rm g})]$ a*
    中性反应 CO2 + O$ \Rightarrow$CO + O2 0 $2.8 \times 10^{-17} \exp [-(26500/T_{\rm g})] $ a*
    中性反应 CO2 + C$ \Rightarrow$CO + CO 0 $1.0 \times 10^{-21}$ a*
    中性反应 CO + O + CO2$ \Rightarrow$CO2 + CO2 0 $8.2 \times 10^{-46} \exp [-(1510/T_{\rm g})] $ b*
    中性反应 O2 + CO$ \Rightarrow$CO2 + O 0 $4.2 \times 10^{-18} \exp [-(24000/T_{\rm g})] $ a*
    中性反应 O2 + C$ \Rightarrow$CO + O 0 $3.0 \times 10^{-17} $ a*
    中性反应 O + C + CO2$ \Rightarrow$CO + CO2 0 $9.12 \times 10^{-37}T_{\rm g}^{-3.08} \exp [-(2114/T_{\rm g})] $ b*
    中性反应 O + O + CO2$ \Rightarrow$O2 + CO2 0 $3.81 \times 10^{-42}T_{\rm g}^{-1} \exp [-(170/T_{\rm g})] $ b*
    注: a*代表单位为m3/(mol·s), b*代表单位为m6/(mol2·s).
    下载: 导出CSV
  • [1]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [2]

    George A, Shen B X, Craven M, Wang Y L, Kang D R, Wu C F, Tu X 2021 Renew. Sust. Energ. Rev. 135 109702Google Scholar

    [3]

    Bogaerts A, Neyts E C, Guaitella O, Murphy A B 2022 Plasma Sources Sci. Technol. 31 053002Google Scholar

    [4]

    Sun S R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [5]

    张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar

    [6]

    Hinterman E, Hoffman J A 2020 Acta Astronaut. 170 678Google Scholar

    [7]

    McClean J B, Hoffman J A, Hecht M H, Aboobaker A M, Araghi K R, Elangovan S, Graves C R, Hartvigsen J J, Hinterman E D, Liu A M, Meyen F E, Nasr M, Ponce A, Rapp D, SooHoo J G, Swobada J, Voecks G E 2022 Acta Astronaut. 192 301Google Scholar

    [8]

    Wang W Z, Kim H H, Laer K V, Bogaerts A 2018 Chem. Eng. J. 334 2467Google Scholar

    [9]

    Kruszelnicki J, Engeling K W, Foster J E, Xiong Z M, Kushner M J 2017 J. Phys. D: Appl. Phys. 50 025203Google Scholar

    [10]

    Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002Google Scholar

    [11]

    Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process 43 1613Google Scholar

    [12]

    Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004Google Scholar

    [13]

    Cheng H, Ma M Y, Zhang Y Z, Liu D W, Lu X P 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [14]

    Lu N, Liu N, Zhang C K, Su Y, Shang K F, Jiang N, Li J, Wu Y 2021 Chem. Eng. J. 417 129283Google Scholar

    [15]

    Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207Google Scholar

    [16]

    Kaliyappan P, Paulus A, Haen J D, Pieter S, Uytdenhouwen Y, Hafezkhiabani N, Bogaerts A, Meynen V, Elen K, Hardy A, Bael M V 2021 J. CO2 Util. 46 101468Google Scholar

    [17]

    Uytdenhouwen Y, Meynen V, Cool P, Bogaerts A 2020 Catalysts 10 530Google Scholar

    [18]

    Uytdenhouwen Y, Alphen S V, Michielsen I, Meynen V, Cool P, Bogaerts A 2018 Chem. Eng. J. 348 557Google Scholar

    [19]

    Li X R, Dijcks S, Sun A B, Nijdam S, Teunissen J 2024 Plasma Sources Sci. Technol. 33 095009Google Scholar

    [20]

    Marskar R 2024 Plasma Sources Sci. Technol. 33 025023Google Scholar

    [21]

    Zhou C, Yuan C X, Kudryavtsev A, Katircioglu T Y, Rafatov I, Yao J F 2023 Plasma Sources Sci. Technol. 32 015010Google Scholar

    [22]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [23]

    张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 物理学报 61 245205Google Scholar

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205Google Scholar

    [24]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703Google Scholar

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [25]

    肖江平, 戴栋, Victor F. Tarasenko, 邵涛 2023 物理学报 72 105201Google Scholar

    Xiao J P, Dai D, Tarasenko V F, Shao T 2023 Acta Phys. Sin. 72 105201Google Scholar

    [26]

    Zhu Y F, Chen X C, Wu Y, Starikovskaia S 2021 PASSKEy code [software]. Available from http://www.plasma-tech.net/parser/passkey/, Science and Technology of Plasma Dynamics Laboratory, Xi’an, China and Laboratoire de Physique des Plasmas, Paris, France

    [27]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [28]

    Pancheshnyi S 2014 Plasma Sources Sci. Technol. 24 015023Google Scholar

    [29]

    Zhu Y F, Wu Y, Li J 2020 arXiv. 2005.10021

    [30]

    Guo Y L, Li Y R, Zhu Y F, Sun A B 2023 Plasma Sources Sci. Technol. 32 025003Google Scholar

    [31]

    Bourdon A, Pasko V P, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16 656Google Scholar

    [32]

    Teich T H 1967 Z. Phys. 199 378Google Scholar

    [33]

    Przybylski A 1962 Z. Phys. 168 504Google Scholar

    [34]

    Sroka W 1970 Zeitschrift für Naturforschung A 25 1437

    [35]

    Bagheri B, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29 125021Google Scholar

    [36]

    Levko D, Pachuilo M, Raja L L 2017 J. Phys. D: Appl. Phys. 50 354004Google Scholar

    [37]

    Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007Google Scholar

    [38]

    Peng B F, Jiang N, Zhu Y F, Wu Y 2024 Plasma Sources Sci. Technol. 33 045018Google Scholar

    [39]

    Itikawa database, www. lxcat. net [2024-05-19]

    [40]

    IST-Lisbon database, www. lxcat. net [2024-05-19]

    [41]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [42]

    Bogaerts A, Wang W Z, Berthelot A, Guerra V 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [43]

    Qian M Y, Zhong W S, Kang J S, Liu S Q, Ren C S, Zhang J L, Wang D Z 2020 Jpn. J. Appl. Phys. 59 066003Google Scholar

    [44]

    Chen Y L, Peng Y, Qian M Y, Liu S Q, Zhang J L, Wang D Z 2022 Jpn. J. Appl. Phys. 61 086001Google Scholar

  • [1] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响. 物理学报, 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [2] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [3] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] 曾平, 宋盼, 王小伟, 赵晶, 张栋文, 袁建民, 赵增秀. 强飞秒激光场下二氧化碳二聚体四价离子的多体解离动力学. 物理学报, 2023, 72(18): 187901. doi: 10.7498/aps.72.20230699
    [5] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析. 物理学报, 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [6] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [7] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [8] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [9] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [10] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [11] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [12] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [13] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [14] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度. 物理学报, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [15] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究. 物理学报, 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [16] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [17] 周翔, 张萱, 刘爱芬, 曾祥华. FC(O)O2的结构及其自由基与NO反应的微观机理研究. 物理学报, 2010, 59(7): 5128-5134. doi: 10.7498/aps.59.5128
    [18] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [19] 王佩怡, 杨 春, 李来才, 李言荣. SrTiO3薄膜生长初期Sr,Ti,O原子分子反应机理的理论研究. 物理学报, 2008, 57(4): 2340-2346. doi: 10.7498/aps.57.2340
    [20] 赵 江, 崔 磊, 曾祥华, 徐秀莲. FC(O)O自由基与NO反应机理的理论研究. 物理学报, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
计量
  • 文章访问数:  385
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-10-24
  • 上网日期:  2024-12-11
  • 刊出日期:  2025-01-20

/

返回文章
返回