搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面催化对高温非平衡流场磁控效果影响分析

罗仕超 吴里银 胡守超 龚红明 吕明磊 孔小平

引用本文:
Citation:

壁面催化对高温非平衡流场磁控效果影响分析

罗仕超, 吴里银, 胡守超, 龚红明, 吕明磊, 孔小平
cstr: 32037.14.aps.74.20241307

Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field

LUO Shichao, WU Liyin, HU Shouchao, GONG Hongming, LYU Minglei, KONG Xiaoping
cstr: 32037.14.aps.74.20241307
PDF
HTML
导出引用
  • 以轨道再入实验飞行器为研究对象, 采用热化学非平衡磁流体动力学模型对高超声速飞行器的表面热流进行数值模拟, 分析了不同飞行工况下壁面催化条件对气动热环境影响规律, 研究了外加磁场条件对热化学非平衡流场影响机制. 结果表明: 再入过程中, 表面热流随催化复合系数的增加呈单调递增分布, 壁面催化条件显著影响磁流体动力学控制效果, 总热流密度与壁面附近原子组分堆积量、扩散梯度及温度梯度密切相关. 外加磁场作用下, 壁面附近氧原子、氮原子组分堆积量减少; 洛伦兹力导致激波脱体距离增大, 组分扩散梯度、壁面温度梯度降低. 磁控热防护系统“电磁冷却”能力从大到小依次为全催化、有限催化、非催化壁面.
    In the re-entry process of the vehicle into the atmosphere, the high-temperature environment, induced by the compression of the strong shock wave and viscous retardation, is created around the head of a vehicle. These generate a conductive plasma flow field, which provides a direct working environment for the application of magnetohydrodynaimic (MHD) control technology. Numerical simulations based on thermochemical non-equilibrium MHD model are adopted to analyze the surface heat flux of an orbital reentry experiment (OREX) vehicle. The influences of wall catalytic conditions on the aerothermal environment under different flight conditions are discussed. In addition, the control mechanism of an external magnetic field on high-temperature thermochemical non-equilibrium flow field is analyzed. The results show that the distribution of surface heat flux monotonically increases with the catalytic recombination coefficient increasing, and the surface heat flux rises and then drops with the flight altitude decreasing. Moreover, the wall catalytic properties significantly affect the efficiency of MHD control technology, and the total heat flux is closely related to the accumulation of atomic components, diffusion gradient and temperature gradient near the wall region. With an external magnetic field applied, the accumulation of oxygen atoms and nitrogen atoms near the wall can be reduced. Moreover, the Lorentz force can increase the shock standoff distance, and then reduce the component diffusion gradient and wall temperature gradient. Under three different wall catalytic conditions, the ability to control the surface heat flux MHD is ranked from strong to weak as fully catalyzed, partially catalyzed and non-catalyzed.
      通信作者: 孔小平, kongxiaoping08@126.com
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0405200)和四川省科技计划(批准号: 2024NSFSC1378)资助的课题.
      Corresponding author: KONG Xiaoping, kongxiaoping08@126.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0405200) and the Sichuan Provincial Science and Technology Program of China (Grant No. 2024NSFSC1378).
    [1]

    罗仕超, 张志刚, 柳军, 龚红明, 胡守超, 吴里银, 常雨, 庄宇, 李贤, 黄成扬 2023 力学学报 55 2439Google Scholar

    Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theor. Appl. Mech. 55 2439Google Scholar

    [2]

    Cui Z L, Zhao J, Yao J 2022 Chin. J Aeronaut. 35 56Google Scholar

    [3]

    Bonelli F, Pascazio G, Colonna G 2021 Phys. Rev. Fluids 6 033201Google Scholar

    [4]

    Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut. 201 247Google Scholar

    [5]

    Yu M H, Qiu Z Y, Takahashi Y 2023 Phys. Fluids 35 056106Google Scholar

    [6]

    周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095Google Scholar

    Zhou K, Peng J, Ou D B 2020 Sci. Sin. Technol. 50 1095Google Scholar

    [7]

    丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2018 航空学报 39 121588

    Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 121588

    [8]

    苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476Google Scholar

    Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476Google Scholar

    [9]

    苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442

    Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422

    [10]

    莫凡, 王锁柱, 高振勋 2021 气体物理 6 1

    Mo F, Wang T Z, Gao Z X 2021 Phys. Gases 6 1

    [11]

    梁伟, 金华, 孟松鹤, 杨强, 曾庆轩, 许承海 2021 宇航学报 42 409Google Scholar

    Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409Google Scholar

    [12]

    罗凯, 汪球, 李逸翔, 李进平, 赵伟 2021 力学学报 53 1515

    Luo K, Wang Q, Li J Y, Li J P, Zhao W 2024 Chin. J. Theor. Appl. Mech. 53 1515

    [13]

    Peng S, Jin K, Zheng X 2022 AIAA J. 60 6536Google Scholar

    [14]

    陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theor. Appl. Mech. 40 752

    [15]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fuyang O X 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [16]

    Heather A M, Nikos N 2021 Phys. Fluids 34 107114

    [17]

    滕子昂, 周志峰, 张智超, 许珂, 高振勋 2024 气动研究与试验 2 86

    Teng Z A, Zhou Z F, Zhang Z C, Xu K, Gao Z X 2024 Aerodynamic Research & Experiment 2 86

    [18]

    Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232

    [19]

    Shang J J S, Yan H 2020 Adv. Aerodyn. 2 19Google Scholar

    [20]

    Candler G V 2019 Annu. Rev. Fluid Mech. 51 379Google Scholar

    [21]

    Zhang W, Zhang Z, Wang X 2022 Adv. Aerodyn. 4 38Google Scholar

    [22]

    蒋浩, 车学科, 张天天, 龚陟阳, 柴振霞, 柳军 2023 空天技术 3 40

    Jiang H, Che X K, Zhang T T, Gong Z Y, Chai Z X, Liu J 2023 Aerosp. Technol. 3 45

    [23]

    Park C, Griffith W 1991 Phys. Today 44 98

    [24]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867

    [25]

    李鹏, 陈坚强, 丁明松, 梅杰, 何先耀, 董维中 2021 航空学报 42 726400Google Scholar

    Li P, Cheng J Q, Ding M S, Mei J, He X Y, Dong W Z 2021 Acta Aeronaut. Astronaut. Sin. 42 726400Google Scholar

    [26]

    MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J. Spacecraft Rockets 50 470Google Scholar

    [27]

    莫凡, 高振勋, 蒋崇文, 李椿萱 2021 中国科学: 物理学 力学 天文学 51 104703Google Scholar

    Mo F, Gao Z X, Jiang C W, Li C X 2021 Sci. Sin. Phys. Mech. Astron. 51 104703Google Scholar

    [28]

    Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041Google Scholar

    [29]

    李开 2017 博士学位论文 (长沙: 国防科技大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [30]

    Doihara R, Nishida M 2002 Shock Waves 11 331Google Scholar

    [31]

    罗仕超, 吴里银, 常雨 2022 物理学报 71 214702Google Scholar

    Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702Google Scholar

    [32]

    罗仕超, 胡守超, 柳军, 吴里银, 孔小平, 常雨, 吕明磊 2024 中国科学: 物理学 力学 天文学 54 274711Google Scholar

    Luo S C, Hu S C, Liu J, Wu L Y, Kong X P, Chang Y, Lü M L 2024 Sci. Sin. Phys. Mech. Astron. 54 274711Google Scholar

    [33]

    Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1Google Scholar

    [34]

    张智超, 高振勋, 蒋崇文, 李椿萱 2015 北京航空航天大学学报 41 594

    Zhang Z C, Gao Z X, Jiang C W. Li C X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 594

  • 图 1  高焓膨胀管球头脱体激波实验图像与计算结果对比

    Fig. 1.  Comparison between high enthalpy expansion tube experimental images and calculated results of ball head detached shock wave.

    图 2  不同催化壁面条件热流计算结果与实验结果对比

    Fig. 2.  Comparison between calculated heat flux under different catalytic wall conditions and experimental results.

    图 3  不同壁面催化条件下热流分布 (a) 完全催化; (b) 部分催化; (c) 非催化

    Fig. 3.  Heat flux distribution under different wall catalytic conditions: (a) Full catalysis; (b) partially catalysis: (c) non-catalysis.

    图 4  不同壁面催化模型OREX算例驻点热流计算与实验结果的比较

    Fig. 4.  Comparison of computed stagnation point heat flux with OREX experimental results under different wall catalytic models.

    图 5  OREX各工况驻点热流随壁面催化复合系数的变化曲线

    Fig. 5.  Variation of stagnation point heat flux along wall catalytic recombination coefficient under various OREX conditions.

    图 6  外加磁场对流场洛伦兹力及感应电流分布的影响(FCW)

    Fig. 6.  Lorentz force and annular electric current distribution with an external magnetic field applied (FCW).

    图 7  外加磁场对流场振动焦耳热源项分布的影响(FCW)

    Fig. 7.  Vibrational Joule heat energy source term distribution with an external magnetic field applied (FCW).

    图 8  全催化壁面外加磁场对流场温度分布的影响

    Fig. 8.  Temperature contour distribution under fully catalytic wall conditions with an external magnetic field applied.

    图 9  不同壁面催化条件、磁场条件对驻点线温度分布的影响 (a) 平动温度; (b) 振动温度

    Fig. 9.  Temperature distribution along stagnation point line under different wall catalytic conditions with an external magnetic field applied: (a) Translational temperature; (b) vibrational temperature.

    图 10  不同磁场强度作用下组元质量分数分布云图(FCW)

    Fig. 10.  Species contour structure under different imposed magnetic field strengths (FCW).

    图 11  不同磁场强度作用下驻点线组元质量分数分布(FCW)

    Fig. 11.  Mass fraction of the species along stagnation point line under different imposed magnetic field strengths (FCW).

    图 12  不同磁场强度作用下驻点线组元质量分数分布(PCW, γ = 7.7×10–3)

    Fig. 12.  Mass fraction of the species along stagnation point line under different imposed magnetic field strengths (PCW, γ = 7.7×10–3)

    图 13  不同壁面催化条件下MHD流场压力分布轮廓图

    Fig. 13.  MHD flow field pressure profiles under different wall catalytic conditions.

    图 14  不同壁面催化条件下驻点总热流密度随磁场强度的变化情况 (a) 总热流; (b) 传导热流; (c) 扩散热流

    Fig. 14.  Variation of heat flux at stagnation point along magnetic field strength under different wall catalysis conditions: (a) Total heat flux; (b) conductive heat flux; (c) diffusion heat flux.

    表 1  高温空气里主要发生的反应类型及正逆反应控制温度[22]

    Table 1.  Main types of reactions in high temperature air and control temperature of forward and reverse reactions[22].

    反应类型 反应表达式 控制温度
    离解反应 $ {\text{AB}} + {\text{M}} \rightleftarrows {\text{A}} + {\text{B}} + {\text{M}} $ $ 正向 : {T}_{\text{f}} = {T}^{\alpha }{T}_{v}^{1-\alpha };\text{ }逆向 : {T}_{\text{b}} = T $
    交换反应 $ \begin{array}{c} {\text{AB}} + {\text{C}} \rightleftarrows {\text{A}} + {\text{BC}} \\ {\text{A}}{{\text{B}}^ + } + {\text{C}} \rightleftarrows {{\text{A}}^ + } + {\text{BC}} \end{array} $ $ 正向 : {T}_{\text{f}} = T;\text{ }逆向 : {T}_{\text{b}} = T $
    一般电离反应 $ \begin{array}{c} {\text{A}} + {\text{B}} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {{\mathrm{e}}^ - } \\ {\text{AB}} + {\text{M}} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {{\mathrm{e}}^ - } + {\text{M}} \\ {{\text{A}}_2} + {{\text{B}}_2} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {\text{AB}} + {{\mathrm{e}}^ - } \end{array} $ $ 正向 : {T}_{\text{f}} = T;\text{ }逆向 : {T}_{\text{b}} = {T}_{v} $
    电子碰撞电离反应 $ {\text{A}} + {{\mathrm{e}}^ - } \rightleftarrows {{\text{A}}^ + } + {{\mathrm{e}}^ - } + {{\mathrm{e}}^ - } $ $ 正向 : {T}_{{\mathrm{f}}} = {T}_{v};\text{ }逆向 : {T}_{\text{b}} = {T}_{v} $
    下载: 导出CSV

    表 2  高焓球头实验流场参数

    Table 2.  Flow field parameters of high enthalpy ball head experiment.

    参数 符号
    速度/(km·s–1) ${V_\infty }$ 7.99
    来流温度/K T 345
    总焓/(MJ·kg–1) ${H_0}$ 32
    来流密度/(kg·m–3) ρ 1.77×10–4
    下载: 导出CSV

    表 3  OREX计算工况[30]

    Table 3.  Flow conditions for the OREX simulation[30].

    算例 飞行时间 H/km ${\rho _\infty }$/(kg·m–3) Ma ${T_\infty }$/K
    C1 7441.5 71.73 6.489×10–5 23.89 214.98
    C2 7451.5 67.66 1.143×10–4 22.22 225.99
    C3 7461.5 63.60 1.960×10–4 20.09 237.14
    C4 7471.5 59.60 3.255×10–4 17.55 248.12
    C5 7481.5 55.74 5.203×10–4 14.71 258.74
    C6 7491.5 51.99 8.065×10–4 11.80 268.20
    C7 7501.5 48.40 1.253×10–3 9.06 270.65
    下载: 导出CSV

    表 4  OREX飞行器计算网格

    Table 4.  Computational grid for OREX vehicle.

    网格 $\Delta n$/(10–6 m) $R{e_{\Delta n, \infty }}$
    Case_M1 252.00 20
    Case_M2 126.00 10
    Case_M3 50.00 4
    Case_M4 25.00 2
    Case_M5 7.20 0.6
    Case_M6 3.60 0.3
    下载: 导出CSV

    表 5  OREX各工况与实验数据拟合得到的驻点有效催化复合系数

    Table 5.  Effective recombination coefficient at stagnation point in accordance with experimental data under various OREX conditions.

    工况 H /km 驻点热流实验结果$ Q_{\text{w},\exp}/(\text{MW}{\cdot}\text{m}^{-2}) $ 实验数据
    拟合有效
    催化系数
    γ/10–3
    C1 71.73 0.354 7.7
    C2 67.66 0.401 6.3
    C3 63.60 0.410 5.5
    C4 59.60 0.369 4.2
    C5 55.74 0.275 5.5
    C6 51.99 0.179 9.6
    C7 48.40 0.093 36.0
    下载: 导出CSV
  • [1]

    罗仕超, 张志刚, 柳军, 龚红明, 胡守超, 吴里银, 常雨, 庄宇, 李贤, 黄成扬 2023 力学学报 55 2439Google Scholar

    Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theor. Appl. Mech. 55 2439Google Scholar

    [2]

    Cui Z L, Zhao J, Yao J 2022 Chin. J Aeronaut. 35 56Google Scholar

    [3]

    Bonelli F, Pascazio G, Colonna G 2021 Phys. Rev. Fluids 6 033201Google Scholar

    [4]

    Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut. 201 247Google Scholar

    [5]

    Yu M H, Qiu Z Y, Takahashi Y 2023 Phys. Fluids 35 056106Google Scholar

    [6]

    周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095Google Scholar

    Zhou K, Peng J, Ou D B 2020 Sci. Sin. Technol. 50 1095Google Scholar

    [7]

    丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2018 航空学报 39 121588

    Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 121588

    [8]

    苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476Google Scholar

    Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476Google Scholar

    [9]

    苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442

    Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422

    [10]

    莫凡, 王锁柱, 高振勋 2021 气体物理 6 1

    Mo F, Wang T Z, Gao Z X 2021 Phys. Gases 6 1

    [11]

    梁伟, 金华, 孟松鹤, 杨强, 曾庆轩, 许承海 2021 宇航学报 42 409Google Scholar

    Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409Google Scholar

    [12]

    罗凯, 汪球, 李逸翔, 李进平, 赵伟 2021 力学学报 53 1515

    Luo K, Wang Q, Li J Y, Li J P, Zhao W 2024 Chin. J. Theor. Appl. Mech. 53 1515

    [13]

    Peng S, Jin K, Zheng X 2022 AIAA J. 60 6536Google Scholar

    [14]

    陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theor. Appl. Mech. 40 752

    [15]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fuyang O X 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [16]

    Heather A M, Nikos N 2021 Phys. Fluids 34 107114

    [17]

    滕子昂, 周志峰, 张智超, 许珂, 高振勋 2024 气动研究与试验 2 86

    Teng Z A, Zhou Z F, Zhang Z C, Xu K, Gao Z X 2024 Aerodynamic Research & Experiment 2 86

    [18]

    Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232

    [19]

    Shang J J S, Yan H 2020 Adv. Aerodyn. 2 19Google Scholar

    [20]

    Candler G V 2019 Annu. Rev. Fluid Mech. 51 379Google Scholar

    [21]

    Zhang W, Zhang Z, Wang X 2022 Adv. Aerodyn. 4 38Google Scholar

    [22]

    蒋浩, 车学科, 张天天, 龚陟阳, 柴振霞, 柳军 2023 空天技术 3 40

    Jiang H, Che X K, Zhang T T, Gong Z Y, Chai Z X, Liu J 2023 Aerosp. Technol. 3 45

    [23]

    Park C, Griffith W 1991 Phys. Today 44 98

    [24]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867

    [25]

    李鹏, 陈坚强, 丁明松, 梅杰, 何先耀, 董维中 2021 航空学报 42 726400Google Scholar

    Li P, Cheng J Q, Ding M S, Mei J, He X Y, Dong W Z 2021 Acta Aeronaut. Astronaut. Sin. 42 726400Google Scholar

    [26]

    MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J. Spacecraft Rockets 50 470Google Scholar

    [27]

    莫凡, 高振勋, 蒋崇文, 李椿萱 2021 中国科学: 物理学 力学 天文学 51 104703Google Scholar

    Mo F, Gao Z X, Jiang C W, Li C X 2021 Sci. Sin. Phys. Mech. Astron. 51 104703Google Scholar

    [28]

    Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041Google Scholar

    [29]

    李开 2017 博士学位论文 (长沙: 国防科技大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [30]

    Doihara R, Nishida M 2002 Shock Waves 11 331Google Scholar

    [31]

    罗仕超, 吴里银, 常雨 2022 物理学报 71 214702Google Scholar

    Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702Google Scholar

    [32]

    罗仕超, 胡守超, 柳军, 吴里银, 孔小平, 常雨, 吕明磊 2024 中国科学: 物理学 力学 天文学 54 274711Google Scholar

    Luo S C, Hu S C, Liu J, Wu L Y, Kong X P, Chang Y, Lü M L 2024 Sci. Sin. Phys. Mech. Astron. 54 274711Google Scholar

    [33]

    Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1Google Scholar

    [34]

    张智超, 高振勋, 蒋崇文, 李椿萱 2015 北京航空航天大学学报 41 594

    Zhang Z C, Gao Z X, Jiang C W. Li C X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 594

  • [1] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报, 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [6] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [7] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响. 物理学报, 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [8] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解. 物理学报, 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [9] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [10] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [11] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [12] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [13] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [14] 薛创, 丁宁, 孙顺凯, 肖德龙, 张扬, 黄俊, 宁成, 束小建. 脉冲功率驱动器与Z箍缩负载耦合的全电路数值模拟. 物理学报, 2014, 63(12): 125207. doi: 10.7498/aps.63.125207
    [15] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [16] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [17] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [18] 宋男男, 吴士平, 栾义坤, 康秀红, 李殿中. 卧式离心铸造过程数值模拟与水力学试验研究. 物理学报, 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [19] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布. 物理学报, 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [20] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
计量
  • 文章访问数:  297
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2024-11-25
  • 上网日期:  2024-12-05

/

返回文章
返回